2个回答
展开全部
a(n+1)=a(1)+2a(2)+...+na(n), a(2) = a(1) = 1.
a(n+2)=a(1)+2a(2)+...+na(n)+(n+1)a(n+1) = a(n+1) + (n+1)a(n+1) = (n+2)a(n+1),
a(n+2)/(n+2)! = a(n+1)/(n+1)!,
{a(n+1)/(n+1)!}是首项为a(2)/2 = 1/2,的常数数列。
a(n+1)/(n+1)! = 1/2,
a(n+1) = (n+1)!/2,
{a(n)}的通项为,
a(1)=1,
n>=2时,a(n) = n!/2.
a(n+2)=a(1)+2a(2)+...+na(n)+(n+1)a(n+1) = a(n+1) + (n+1)a(n+1) = (n+2)a(n+1),
a(n+2)/(n+2)! = a(n+1)/(n+1)!,
{a(n+1)/(n+1)!}是首项为a(2)/2 = 1/2,的常数数列。
a(n+1)/(n+1)! = 1/2,
a(n+1) = (n+1)!/2,
{a(n)}的通项为,
a(1)=1,
n>=2时,a(n) = n!/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询