
若x1,x2是方程x²-5x-7=0的两根,那么x1²+x2²=____________,(x1-x2)²=________.
展开全部
解答:
由韦达定理得:
①、x1+x2=5
②、x1×x2=-7
∴﹙x1﹚²+﹙x2﹚²
=﹙x1+x2﹚²-2x1×x2
=5²-2×﹙-7﹚
=39
∴﹙x1-x2﹚²
=﹙x1+x2﹚²-4x1×x2
=5²-4×﹙-7﹚
=53
由韦达定理得:
①、x1+x2=5
②、x1×x2=-7
∴﹙x1﹚²+﹙x2﹚²
=﹙x1+x2﹚²-2x1×x2
=5²-2×﹙-7﹚
=39
∴﹙x1-x2﹚²
=﹙x1+x2﹚²-4x1×x2
=5²-4×﹙-7﹚
=53
展开全部
x1²+x2²=(x1+x2)^2-2x1x2=5^2-2*(-7)=25+14=39
(x1-x2)²=x1^2+x2^2-2x1x2=39-2*(-7)=39+14=53
(x1-x2)²=x1^2+x2^2-2x1x2=39-2*(-7)=39+14=53
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由题,根据韦达定理得x1+x2=5,x1x2=-7
于是,x1²+x2²=(x1+x2)²-2x1x2=5²-2*(-7)=25+14=39
(x1-x2)²==(x1+x2)²-4x1x2=5²-4*(-7)=25+28=53
于是,x1²+x2²=(x1+x2)²-2x1x2=5²-2*(-7)=25+14=39
(x1-x2)²==(x1+x2)²-4x1x2=5²-4*(-7)=25+28=53
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询