第二十一题,求详细过程
展开全部
先处理一般项:
(n+ 2)/[n!+ (n+1)!+ (n+2)!]
= (n + 2)/{ n![1+(n+1)+(n+1)(n+2)]}
= (n+ 2)/( n!(n^2 + 4n+ 4)]
= (n + 2)/( n!(n + 2)^2]
= 1 /( n!(n + 2)]
= (n + 1)/ (n + 2)!
= (n + 2 - 1)/ (n + 2)!
= 1 / (n+ 1)! - 1 / (n + 2)!
原式 = 3/(1!+2!+3!) + 4/(2!+3!+4!) +...+ (N+2)/[N!+(N+1)!+(N+2)!]
= [1/2!- 1/3!] + [1/3!- 1/4!] + ......+ [1 / (N + 1)!- 1 / (N + 2)!]
= 1/2 - 1 / (N + 2)!
= [(N + 2)! - 2] / [2(N + 2)!]
(n+ 2)/[n!+ (n+1)!+ (n+2)!]
= (n + 2)/{ n![1+(n+1)+(n+1)(n+2)]}
= (n+ 2)/( n!(n^2 + 4n+ 4)]
= (n + 2)/( n!(n + 2)^2]
= 1 /( n!(n + 2)]
= (n + 1)/ (n + 2)!
= (n + 2 - 1)/ (n + 2)!
= 1 / (n+ 1)! - 1 / (n + 2)!
原式 = 3/(1!+2!+3!) + 4/(2!+3!+4!) +...+ (N+2)/[N!+(N+1)!+(N+2)!]
= [1/2!- 1/3!] + [1/3!- 1/4!] + ......+ [1 / (N + 1)!- 1 / (N + 2)!]
= 1/2 - 1 / (N + 2)!
= [(N + 2)! - 2] / [2(N + 2)!]
追问
谢谢
追答
原式 = 3/(1!+2!+3!) + 4/(2!+3!+4!) +...+ (n+2)/[n!+(n+1)!+(n+2)!]
= [1/2!- 1/3!] + [1/3!- 1/4!] + ......+ [1 / (n + 1)!- 1 / (n + 2)!]
= 1/2 - 1 / (n+ 2)!
= [(n + 2)! - 2] / [2n + 2)!]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询