试求一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同
解:设该四位数为1000a+100a+10b+b,则1000a+100a+10b+b=1100a+11b=11(100a+b)故1,又因为(a+b)≤18所以a+b=11...
解:设该四位数为1000a+100a+10b+b,则
1000a+100a+10b+b=1100a+11b =11(100a+b)
故1,又因为(a+b)≤18
所以a+b=11,
带入上式得 四位数=11×(a×100+(11-a)) =11×(a×99+11) =11×11×(9a+1)
故9a+1必须为完全平方数。 由a=2、3、4、5、6、7、8、9验证得, 9a+1=19、28、27、46、55、64、73。 所以只有a=7一个解;此时b=4。 因此四位数是7744=112×82=88×88。
为什么100a+b被11整除,就等价于a+b被11整除? 怎么推出来的? 展开
1000a+100a+10b+b=1100a+11b =11(100a+b)
故1,又因为(a+b)≤18
所以a+b=11,
带入上式得 四位数=11×(a×100+(11-a)) =11×(a×99+11) =11×11×(9a+1)
故9a+1必须为完全平方数。 由a=2、3、4、5、6、7、8、9验证得, 9a+1=19、28、27、46、55、64、73。 所以只有a=7一个解;此时b=4。 因此四位数是7744=112×82=88×88。
为什么100a+b被11整除,就等价于a+b被11整除? 怎么推出来的? 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询