求高一数学函数所有知识、公式的整理笔记

 我来答
匿名用户
2013-08-14
展开全部
求解函数解析式的几种常用方法主要有 1 待定系数法,如果已知函数解析式的构造时,用待定系数法;2 换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 求函数的值域此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图象法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域 判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性 若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性 同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一 复合函数的奇偶性、单调性 问题的解决关键在于 既把握复合过程,又掌握基本函数 1 二次函数的基本性质(1)二次函数的三种表示法 y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n (2)当a>0,f(x)在区间[p,q]上的最大值M,最小值m,令x0= (p+q) 若- <p,则f(p)=m,f(q)=M;若p≤- <x0,则f(- )=m,f(q)=M;若x0≤- <q,则f(p)=M,f(- )=m;若- ≥q,则f(p)=M,f(q)=m 2 二次方程f(x)=ax2+bx+c=0的实根分布及条件 (1)方程f(x)=0的两根中一根比r大,另一根比r小 a·f(r)<0;(2)二次方程f(x)=0的两根都大于r (3)二次方程f(x)=0在区间(p,q)内有两根 (4)二次方程f(x)=0在区间(p,q)内只有一根 f(p)·f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立 (5)方程f(x)=0两根的一根大于p,另一根小于q(p<q) 3 二次不等式转化策略(1)二次不等式f(x)=ax2+bx+c≤0的解集是 (-∞,α )∪[β,+∞ a<0且f(α)=f(β)=0;(2)当a>0时,f(α)<f(β) |α+ |<|β+ |,当a<0时,f(α)<f(β) |α+ |>|β+ |;(3)当a>0时,二次不等式f(x)>0在[p,q]恒成立或 (4)f(x)>0恒成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式