已知函数f(x)=(x-k)∧2*e∧(x/k). (1)求f(x)的单调区间(2)若对于任意的x∈(0,+∞),都有f(x)≦1/e,求k的

已知函数f(x)=(x-k)∧2*e∧(x/k).(1)求f(x)的单调区间(2)若对于任意的x∈(0,+∞),都有f(x)≦1/e,求k的取值范围我觉得我就要死在这数学... 已知函数f(x)=(x-k)∧2*e∧(x/k). (1)求f(x)的单调区间(2)若对于任意的x∈(0,+∞),都有f(x)≦1/e,求k的取值范围 我觉得我就要死在这数学上了 展开
百度网友c8b51968f
2013-08-14 · TA获得超过6777个赞
知道大有可为答主
回答量:1625
采纳率:66%
帮助的人:900万
展开全部
(1)f‘(x)=2(X-K)*e^(x/k)+(x-k)²*e^(x/k)/K
=(x²/k-k)e^(x/k)
后面e^(x/k)恒大于0的
x²/k-k=0 x=±k
①若k>0
x²/k-k>0⇒|X|>K
此时
f(X)在(-∞,-K)U(K,+∞)上是增函数
f(X)在[-K,K]上是减函数
②若k<0
x²/k-k>0⇒|X|<-K
此时
f(X)在(k,-k)上是增函数
f(X)在(-∞,K)U(-K,+∞)上是减函数

(2)k>0的时候
上面已经讨论f(X)在(-∞,-K)U(K,+∞)上是增函数
在这个区间不可能存在最大值
所以k<0
这时候
f(X)在(k,-k)上是增函数
f(X)在(-∞,K)U(-K,+∞)上是减函数
所以正数部分f(x)在-k处取得极大值
只要这个极大值都小于等于1/e,就符合题意
带入-k于原函数
f(-k)=4k²×e^(-1)≤1/e
4k²≤1⇒|k|<1/2
又k<0
所以k∈[-1/2,0)
追答
还有:
对f(x)求导数得到f(x)'=(e^(x/k)/k)(x-k)(x+k)
令f(x)'=0;得x1=k,x2=-k两个驻点,这里恰好也为极值点;
当k>=0时,单调区间(-∞,-k]∪(k,+∞)单调递增;(-k,k]单调递减
k=0都有f(x)=0可以分两类情况讨论
a)k>0时,(k,+∞)单调递增[0,k]单调递减
需要比较端点值(因为x=k是极小值点)
f(0)=k^2;f(+∞)-->+∞不满足条件

b)k<0时,(-k,+∞)单调递减,[0,-k]单调递增
只需考虑f(0)(因为x=0是极大值点)
f(0)=k^2<=1/e
解得-(1/e)^(1/2)<=k<0

http://zhidao.baidu.com/question/395782402.html

不太懂,百度来的。
希望能对你有所帮助。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式