目前世界七大数学难题分别属于数学中哪些分支的问题?

 我来答
lileiyuan
2013-08-15 · TA获得超过121个赞
知道答主
回答量:175
采纳率:100%
帮助的人:27.9万
展开全部
一:NP完全问题
二: 霍奇(Hodge)猜想
三:黎曼(Riemann)假设
四: 杨-米尔斯(Yang-Mills)理论
五:纳维叶-斯托克斯(Navier-Stokes)方程
六:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
第七个我忘记了,
追问
它们都分别属于数学上哪个领域的问题?
追答
您好!具体属于哪个领域的我也说不好,具体可参考下:一:NP完全问题
如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器验证这是对的。很快用内部结构来验证一个答案,还是花费大量的时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文?考克(StephenCook)于1971年陈述的。
二: 霍奇(Hodge)猜想
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
三:黎曼(Riemann)假设
著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1500000000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
四: 杨-米尔斯(Yang-Mills)理论
大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。“质量缺口”假设,从来没有得到一个数学上令人满意的证实。
五:纳维叶-斯托克斯(Navier-Stokes)方程
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可通过理解纳维叶-斯托克斯方程的解,来对其进行解释和预言。
六:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式