已知等差数列{an}的首项a1=1,公差d>0,数列{bn}是等比数列,且满足a1=b1,a2=b2,a5=b3
设数列{cn}对任意n均有c1/b1+c2/b2+……+cn/bn=a(n+1),求c1+c2+……+c2013的值...
设数列{cn}对任意n均有c1/b1+c2/b2+……+cn/bn=a(n+1),求c1+c2+……+c2013的值
展开
2个回答
展开全部
an = 1+(n-1)d
bn = b1q^(n-1)
a1=b1 =1
a2=b2
1+d =q (1)
a5=b3
1+4d = q^2 (2)
(1)^2 /(2)
(1+d)^2 = 1+4d
d^2-2d =0
d= 2
q= 3
ie
an = 1+(n-1)2 = 2n-1
bn=b1q^(n-1) = 3^(n-1)
c1/b1+c2/b2+……+cn/bn=a(n+1) (3)
c1/b1+c2/b2+……+c(n-1)/b(n-1)=an (4)
(3)-(4)
cn/bn = a(n+1) -an
cn = bn.[a(n+1) -an]
= 2. 3^(n-1)
c1+c2+...+c2013
=(3^2013)- 1
bn = b1q^(n-1)
a1=b1 =1
a2=b2
1+d =q (1)
a5=b3
1+4d = q^2 (2)
(1)^2 /(2)
(1+d)^2 = 1+4d
d^2-2d =0
d= 2
q= 3
ie
an = 1+(n-1)2 = 2n-1
bn=b1q^(n-1) = 3^(n-1)
c1/b1+c2/b2+……+cn/bn=a(n+1) (3)
c1/b1+c2/b2+……+c(n-1)/b(n-1)=an (4)
(3)-(4)
cn/bn = a(n+1) -an
cn = bn.[a(n+1) -an]
= 2. 3^(n-1)
c1+c2+...+c2013
=(3^2013)- 1
展开全部
(1)∵a2=1+d,a5=1+4d,a14=1+13d,且a2、a5、a14成等比数列
∴(1+4d)2=(1+d)(1+13d)即d=2∴an=1+(n-1)•2=2n-1
又∵b2=a2=3,b3=a5=9、∴q=3,b1=1,bn=3n-1
(2)∵
C1
b1
+
C2
b2
++
Cn
bn
=an+1①
∴
C1
b1
=a2即C1=b1a2=3
又
C1
b1
+
C2
b2
++
Cn-1
bn-1
=an (n≥2)②
①-②:
Cn
bn
=an+1-an=2
∴Cn=2•bn=2•3n-1(n≥2)
∴Cn=
3 (n=1)
2•3n-1 (n≥2)
∴
C1+C2+C 3
++C2010=3+2•31+2•32++2•32013-1
=3+2•(31+32+33++32012)=3+2•3(1-32012)
1-3
=32013
∴(1+4d)2=(1+d)(1+13d)即d=2∴an=1+(n-1)•2=2n-1
又∵b2=a2=3,b3=a5=9、∴q=3,b1=1,bn=3n-1
(2)∵
C1
b1
+
C2
b2
++
Cn
bn
=an+1①
∴
C1
b1
=a2即C1=b1a2=3
又
C1
b1
+
C2
b2
++
Cn-1
bn-1
=an (n≥2)②
①-②:
Cn
bn
=an+1-an=2
∴Cn=2•bn=2•3n-1(n≥2)
∴Cn=
3 (n=1)
2•3n-1 (n≥2)
∴
C1+C2+C 3
++C2010=3+2•31+2•32++2•32013-1
=3+2•(31+32+33++32012)=3+2•3(1-32012)
1-3
=32013
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询