3个回答
2013-08-17
展开全部
完全数不多,已初步看到,前八千多个正整数才4个!物以稀为贵,完全数稀罕.在1到40000000这么多数里,只有七个完全数,它们是:6,28,496,8128,130816,2096128,33550336.可见完全数是非常稀少的.
从第四个完全数8128到第七个完全数33550336的发现经过一千多年,这是因为第七个完全数要比第四个完全数大了4100多倍.这可能是历经一千多年才艰难跨出一步的原因.用完满来形容6,28,496,…这一类数很恰当.这种数一方面表现在它稀罕、奇妙,一方面表现在它的完满,各因数的和不多不少等于它自己.完全数还有一些令人感到神奇的鲜为人知的有趣事实,π数值取小数点后面3位相加恰是第一个完全数6(=1+4+1),小数点后7位相加正好等于第2个完全数 28(= 1+4+1+5+9+2
+6).居然能有如此的联系,难道不足以令人惊讶吗?具体地说,完全数还具有以下的有趣事实:
(1)所有已知的完全数,除6以外,其数字和均为1.也就是说,它们的数字反复相加的最终结果等于1.
例如: 496
4+9+6=19,1+9=10,1+0=1.
(2)所以完全数都可以表示为2的一些连续整数次幂之和,如:
6=21+22,
28=22+23+24,
496=24+25+26+27+28,
8128=26+27+28+…+212,
33550336=212+213+214+…+224.
(3)除了6以外,其他完全数可表示为连续奇数的三次方之和,如:
28=13+33,
496=13+33+53+73,
8128=13+33+53+…+153,
33550336=13+33+53+…+1253+…+1273.
如此完美的模式,难怪完全数如此的迷人,具有魅力,因此,完全数是极美的数.
(4)迄今为止,发现的完全数都是偶数,还没有发现一个奇完全数,但也没有证明奇完全数不存在.
(5)迄今为止,发现的完全数都具有以下的形式:
N=2n-1(2n-1)(其中n与2n-1都是素数).
事实上,在欧几里得《几何原本》卷九中的最后一个定理,就是关于完全数的,它陈述如下:
“如果2n-1是一个素数,则2n-1(2n-1)是一个完全数.”
对于n=2,我们得到完全数6.对于n=4,由于24-1不是素数,所以结果不会产生一个完全数,对完全数的探索,古往今来始终困扰着数学家.
直到现在还没有人发现一个完全数,也没有一个人能够证明奇完全数不存在(这是数论中著名的未解决的问题之一.)人们认为欧几里得定理的逆命题(“每个完全数有2n-1(2n-1)的形式,这里2n-1是一个素数”)可能成立,但至今没有人能够证明.瑞士数学家欧拉(Leonard Euler , 1707-1783)证明了所有偶完全数都应当有这样的形式.对完全数的探索一直持续到今天.
今天,人们借助于计算机找到了当n=521,607,1279,2203,2281,3217,7090,4253,4423时相应的完全数.此外,n=9689,9941,11213,19937时也给出了完全数.你能想像这些完全数有多大.倒如,1963年,伊利诺斯大学发现了对于n=11213时的完全数,它包含6751个数字,有22425个因子.至1998年2月,人们知道的完全数共37个.最后一个完全数相应的n=3021377.
从第四个完全数8128到第七个完全数33550336的发现经过一千多年,这是因为第七个完全数要比第四个完全数大了4100多倍.这可能是历经一千多年才艰难跨出一步的原因.用完满来形容6,28,496,…这一类数很恰当.这种数一方面表现在它稀罕、奇妙,一方面表现在它的完满,各因数的和不多不少等于它自己.完全数还有一些令人感到神奇的鲜为人知的有趣事实,π数值取小数点后面3位相加恰是第一个完全数6(=1+4+1),小数点后7位相加正好等于第2个完全数 28(= 1+4+1+5+9+2
+6).居然能有如此的联系,难道不足以令人惊讶吗?具体地说,完全数还具有以下的有趣事实:
(1)所有已知的完全数,除6以外,其数字和均为1.也就是说,它们的数字反复相加的最终结果等于1.
例如: 496
4+9+6=19,1+9=10,1+0=1.
(2)所以完全数都可以表示为2的一些连续整数次幂之和,如:
6=21+22,
28=22+23+24,
496=24+25+26+27+28,
8128=26+27+28+…+212,
33550336=212+213+214+…+224.
(3)除了6以外,其他完全数可表示为连续奇数的三次方之和,如:
28=13+33,
496=13+33+53+73,
8128=13+33+53+…+153,
33550336=13+33+53+…+1253+…+1273.
如此完美的模式,难怪完全数如此的迷人,具有魅力,因此,完全数是极美的数.
(4)迄今为止,发现的完全数都是偶数,还没有发现一个奇完全数,但也没有证明奇完全数不存在.
(5)迄今为止,发现的完全数都具有以下的形式:
N=2n-1(2n-1)(其中n与2n-1都是素数).
事实上,在欧几里得《几何原本》卷九中的最后一个定理,就是关于完全数的,它陈述如下:
“如果2n-1是一个素数,则2n-1(2n-1)是一个完全数.”
对于n=2,我们得到完全数6.对于n=4,由于24-1不是素数,所以结果不会产生一个完全数,对完全数的探索,古往今来始终困扰着数学家.
直到现在还没有人发现一个完全数,也没有一个人能够证明奇完全数不存在(这是数论中著名的未解决的问题之一.)人们认为欧几里得定理的逆命题(“每个完全数有2n-1(2n-1)的形式,这里2n-1是一个素数”)可能成立,但至今没有人能够证明.瑞士数学家欧拉(Leonard Euler , 1707-1783)证明了所有偶完全数都应当有这样的形式.对完全数的探索一直持续到今天.
今天,人们借助于计算机找到了当n=521,607,1279,2203,2281,3217,7090,4253,4423时相应的完全数.此外,n=9689,9941,11213,19937时也给出了完全数.你能想像这些完全数有多大.倒如,1963年,伊利诺斯大学发现了对于n=11213时的完全数,它包含6751个数字,有22425个因子.至1998年2月,人们知道的完全数共37个.最后一个完全数相应的n=3021377.
杭州彩谱科技有限公司
2020-07-03 广告
2020-07-03 广告
色差计“L”代表物体的明亮度,0-100表示从黑色到白色,l值越高,则越亮,另外a代表红绿色,b代表黄蓝色,c表示彩度(色彩饱和的程度或纯粹度),h表示色调角。对于仪器有问题也可以咨询彩谱。...
点击进入详情页
本回答由杭州彩谱科技有限公司提供
2013-08-17
展开全部
完全数
【定义】若一个自然数,恰好与除去它本身以外的一切因数的和相等,这种数叫做完全数。
例如,6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+124
8128=1+2+4+8+16+32+64+127+254+508+1016+2032+4064
【疑难问题】(1)到底有多少完全数?寻找完全数并不是容易的事。经过不少数学家研究,到目前为止,一共找到了40多个完全数。(2)有没有奇完全数?奇怪的是,已发现的44个完全数都是偶数,会不会有奇完全数存在呢?如果存在,它必须大于10^120。
至今无人能回答这些问题。
【公式】大数学家欧几里德曾推算出完全数的获得公式:如果2^p-1质数,那么(2^p-1)2^(p-1)便是一个完全数。p=2,2^p-1=3是质数,(2^p-1)2^(p-1)=3X2=6p=3,2^p-1=7是质数,(2^p-1)2^(p-1)=7X4=28但是2^p-1什么条件下才是质数呢?
当2^p-1是质数的时候,称其为梅森素数!顾名思义,就是梅森第一个系统地研究这种形式的素数的!事实上,至今(2006.9.4)为止,人类只发现了44个梅森素数,也就是只发现了44个完全数!
【梅森素数表】
序号 p 位数 发现时间 发现者 (reference)
1 2 1 (无从考究) (无从考究)
2 3 2 (无从考究) (无从考究)
3 5 3 (无从考究) (无从考究)
4 7 4 (无从考究) (无从考究)
5 13 8 1461 Reguis(1536), Cataldi(1603)
6 17 12 1588 Cataldi (1603)
7 19 19 1588 Cataldi (1603)
8 31 10 1750 Euler (1772)
9 61 19 1883 Pervouchine (1883), Seelhoff (1886)
10 89 27 1911 Powers (1911)
11 107 33 1913 Powers (1914)
12 127 39 1876 Lucas (1876)
13 521 157 Jan. 30, 1952 Robinson (1954)
14 607 183 Jan. 30, 1952 Robinson (1954)
15 1279 386 Jun. 25, 1952 Robinson (1954)
16 2203 664 Oct. 7, 1952 Robinson (1954)
17 2281 687 Oct. 9, 1952 Robinson (1954)
18 3217 969 Sep. 8, 1957 Riesel
19 4253 1281 Nov. 3, 1961 Hurwitz
20 4423 1332 Nov. 3, 1961 Hurwitz
21 9689 2917 May 11, 1963 Gillies (1964)
22 9941 2993 May 16, 1963 Gillies (1964)
23 11213 3376 Jun. 2, 1963 Gillies (1964)
24 19937 6002 Mar. 4, 1971 Tuckerman (1971)
25 21701 6533 Oct. 30, 1978 Noll and Nickel (1980)
26 23209 6987 Feb. 9, 1979 Noll (Noll and Nickel 1980)
27 44497 13395 Apr. 8, 1979 Nelson and Slowinski
28 86243 25962 Sep. 25, 1982 Slowinski
29 110503 33265 Jan. 28, 1988 Colquitt and Welsh (1991)
30 132049 39751 Sep. 20, 1983 Slowinski
31 216091 65050 Sep. 6, 1985 Slowinski
32 756839 227832 Feb. 19, 1992 Slowinski and Gage
33 859433 258716 Jan. 10, 1994 Slowinski and Gage
34 1257787 378632 Sep. 3, 1996 Slowinski and Gage
35 1398269 420921 Nov. 12, 1996 Joel Armengaud/GIMPS
36 2976221 895832 Aug. 24, 1997 Gordon Spence/GIMPS
37 3021377 909526 Jan. 27, 1998 Roland Clarkson/GIMPS
38 6972593 2098960 Jun. 1, 1999 Nayan Hajratwala/GIMPS
39 13466917 4053946 Nov. 14, 2001 Michael Cameron/GIMPS
40 20996011 6320430 Nov. 17, 2003 Michael Shafer/GIMPS
41 24036583 7235733 May 15, 2004 Josh Findley/GIMPS
42 25964951 7816230 Feb. 18, 2005 Martin Nowak/GIMPS
43 30402457 9152052 Dec. 15, 2005 Curtis Cooper and Steven Boone/GIMPS
44 32582657 9808358 Sep. 4, 2006 Curtis Cooper and Steven Boone/GIMPS
第44个梅森素数是现今人类已知的最大的素数!
【定义】若一个自然数,恰好与除去它本身以外的一切因数的和相等,这种数叫做完全数。
例如,6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+124
8128=1+2+4+8+16+32+64+127+254+508+1016+2032+4064
【疑难问题】(1)到底有多少完全数?寻找完全数并不是容易的事。经过不少数学家研究,到目前为止,一共找到了40多个完全数。(2)有没有奇完全数?奇怪的是,已发现的44个完全数都是偶数,会不会有奇完全数存在呢?如果存在,它必须大于10^120。
至今无人能回答这些问题。
【公式】大数学家欧几里德曾推算出完全数的获得公式:如果2^p-1质数,那么(2^p-1)2^(p-1)便是一个完全数。p=2,2^p-1=3是质数,(2^p-1)2^(p-1)=3X2=6p=3,2^p-1=7是质数,(2^p-1)2^(p-1)=7X4=28但是2^p-1什么条件下才是质数呢?
当2^p-1是质数的时候,称其为梅森素数!顾名思义,就是梅森第一个系统地研究这种形式的素数的!事实上,至今(2006.9.4)为止,人类只发现了44个梅森素数,也就是只发现了44个完全数!
【梅森素数表】
序号 p 位数 发现时间 发现者 (reference)
1 2 1 (无从考究) (无从考究)
2 3 2 (无从考究) (无从考究)
3 5 3 (无从考究) (无从考究)
4 7 4 (无从考究) (无从考究)
5 13 8 1461 Reguis(1536), Cataldi(1603)
6 17 12 1588 Cataldi (1603)
7 19 19 1588 Cataldi (1603)
8 31 10 1750 Euler (1772)
9 61 19 1883 Pervouchine (1883), Seelhoff (1886)
10 89 27 1911 Powers (1911)
11 107 33 1913 Powers (1914)
12 127 39 1876 Lucas (1876)
13 521 157 Jan. 30, 1952 Robinson (1954)
14 607 183 Jan. 30, 1952 Robinson (1954)
15 1279 386 Jun. 25, 1952 Robinson (1954)
16 2203 664 Oct. 7, 1952 Robinson (1954)
17 2281 687 Oct. 9, 1952 Robinson (1954)
18 3217 969 Sep. 8, 1957 Riesel
19 4253 1281 Nov. 3, 1961 Hurwitz
20 4423 1332 Nov. 3, 1961 Hurwitz
21 9689 2917 May 11, 1963 Gillies (1964)
22 9941 2993 May 16, 1963 Gillies (1964)
23 11213 3376 Jun. 2, 1963 Gillies (1964)
24 19937 6002 Mar. 4, 1971 Tuckerman (1971)
25 21701 6533 Oct. 30, 1978 Noll and Nickel (1980)
26 23209 6987 Feb. 9, 1979 Noll (Noll and Nickel 1980)
27 44497 13395 Apr. 8, 1979 Nelson and Slowinski
28 86243 25962 Sep. 25, 1982 Slowinski
29 110503 33265 Jan. 28, 1988 Colquitt and Welsh (1991)
30 132049 39751 Sep. 20, 1983 Slowinski
31 216091 65050 Sep. 6, 1985 Slowinski
32 756839 227832 Feb. 19, 1992 Slowinski and Gage
33 859433 258716 Jan. 10, 1994 Slowinski and Gage
34 1257787 378632 Sep. 3, 1996 Slowinski and Gage
35 1398269 420921 Nov. 12, 1996 Joel Armengaud/GIMPS
36 2976221 895832 Aug. 24, 1997 Gordon Spence/GIMPS
37 3021377 909526 Jan. 27, 1998 Roland Clarkson/GIMPS
38 6972593 2098960 Jun. 1, 1999 Nayan Hajratwala/GIMPS
39 13466917 4053946 Nov. 14, 2001 Michael Cameron/GIMPS
40 20996011 6320430 Nov. 17, 2003 Michael Shafer/GIMPS
41 24036583 7235733 May 15, 2004 Josh Findley/GIMPS
42 25964951 7816230 Feb. 18, 2005 Martin Nowak/GIMPS
43 30402457 9152052 Dec. 15, 2005 Curtis Cooper and Steven Boone/GIMPS
44 32582657 9808358 Sep. 4, 2006 Curtis Cooper and Steven Boone/GIMPS
第44个梅森素数是现今人类已知的最大的素数!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-17
展开全部
一个数所有的因数的的和(不包括本身,即真因数)与其相等,这个数就称作一个完全数。如6的真因数有1,2,3,6=1+2+3所以6就是一个完全数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询