求函数y=x²+2x√1-x²的值域是
展开全部
定义域为1-x^2≥0
所以,x∈[-1,1]
令x=sint(t∈[-π/2,π/2])
则原式y=(sint)^2+2sintcsot=sin^2 t+sin2t
=[(1-cos2t)/2]+sin2t
=sin2t-(1/2)cos2t+(1/2)
=(√5/2)*sin(2t-φ)+(1/2)(其中φ=arcsin(√5/5))
已知t∈[-π/2,π/2]
所以,2t∈[-π,π]
所以,2t-φ∈[-π-arcsin(√5/5),π-arcsin(√5/5)]
所以,sin(2t-φ)∈[-1,1]
所以,y∈[(1-√5)/2,(1+√5)/2]
所以,x∈[-1,1]
令x=sint(t∈[-π/2,π/2])
则原式y=(sint)^2+2sintcsot=sin^2 t+sin2t
=[(1-cos2t)/2]+sin2t
=sin2t-(1/2)cos2t+(1/2)
=(√5/2)*sin(2t-φ)+(1/2)(其中φ=arcsin(√5/5))
已知t∈[-π/2,π/2]
所以,2t∈[-π,π]
所以,2t-φ∈[-π-arcsin(√5/5),π-arcsin(√5/5)]
所以,sin(2t-φ)∈[-1,1]
所以,y∈[(1-√5)/2,(1+√5)/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询