第四题!!!!
2个回答
展开全部
解:
(1)函数的导数dy/dx=-cos(π/4-x),
函数的递减区间,导数小于等于0,-cos(π/4-x)≤0,cos(π/4-x)≥0
2kπ ≤ π/4-x ≤ 2kπ+π/2(k是整数),即-2kπ + π/4 ≥ x ≥ -2kπ-π/4时,
或者2kπ+3π/2 ≤ π/4-x ≤ 2(k+1)π ,即-2kπ-5π/2 ≥ x ≥- 2(k+1)π +π/4
下面求最值:
设dy/dx=-cos(π/4-x)=0,则π/4-x=2(k+1/4)π(最大值),或者π/4-x=2(k+3/4)π(最小值),
当x= π/4-2(k+1/4)π = -2(k-1/4)π时,最大值为1,
当x=π/4-2(k+3/4)π=-2kπ-5/4π时,最小值为-1.
(2)dy/dx=-6sin(2x+π/3)
设-6sin(2x+π/3)≤0,则6sin(2x+π/3)≥0,sin(2x+π/3)≥0
则2kπ ≤ 2x+π/3 ≤ 2kπ+π (k为整数)
2kπ- π/3≤ 2x ≤ 2kπ+π-π/3
kπ- π/6≤ x ≤ kπ+π/3
x在此区间内单调递减。
dy/dx=-6sin(2x+π/3)=0,sin(2x+π/3)=0
当2x+π/3=2kπ,即x=kπ-π/6时,函数最大值为y=3,
当2x+π/3=(2k+1)π,即x=kπ+π/3时,函数最小值为y=-3.
(1)函数的导数dy/dx=-cos(π/4-x),
函数的递减区间,导数小于等于0,-cos(π/4-x)≤0,cos(π/4-x)≥0
2kπ ≤ π/4-x ≤ 2kπ+π/2(k是整数),即-2kπ + π/4 ≥ x ≥ -2kπ-π/4时,
或者2kπ+3π/2 ≤ π/4-x ≤ 2(k+1)π ,即-2kπ-5π/2 ≥ x ≥- 2(k+1)π +π/4
下面求最值:
设dy/dx=-cos(π/4-x)=0,则π/4-x=2(k+1/4)π(最大值),或者π/4-x=2(k+3/4)π(最小值),
当x= π/4-2(k+1/4)π = -2(k-1/4)π时,最大值为1,
当x=π/4-2(k+3/4)π=-2kπ-5/4π时,最小值为-1.
(2)dy/dx=-6sin(2x+π/3)
设-6sin(2x+π/3)≤0,则6sin(2x+π/3)≥0,sin(2x+π/3)≥0
则2kπ ≤ 2x+π/3 ≤ 2kπ+π (k为整数)
2kπ- π/3≤ 2x ≤ 2kπ+π-π/3
kπ- π/6≤ x ≤ kπ+π/3
x在此区间内单调递减。
dy/dx=-6sin(2x+π/3)=0,sin(2x+π/3)=0
当2x+π/3=2kπ,即x=kπ-π/6时,函数最大值为y=3,
当2x+π/3=(2k+1)π,即x=kπ+π/3时,函数最小值为y=-3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询