猜数字的游戏~!
老师从1到80之间(大于1小于80)选了两个自然数,将二者之积告诉同学P(Product),二者之和告诉同学S(Sum),问两位同学能否推出这两个自然数?S说:我知道你不...
老师从1到80之间(大于1小于80)选了两个自然数,将二者之积告诉同学P(Product),二者之和告诉同学S(Sum),问两位同学能否推出这两个自然数?
S说:我知道你不知道这两个数。
P说:那么我知道了
S说:那么我也知道了啦!
其他同学:我们也知道啦!
…………
问:老师选出的两个自然数是什么? 展开
S说:我知道你不知道这两个数。
P说:那么我知道了
S说:那么我也知道了啦!
其他同学:我们也知道啦!
…………
问:老师选出的两个自然数是什么? 展开
1个回答
2013-08-16
展开全部
答案如下~!
说话依次编号为S1,P1,S2。
设这两个数为x,y,和为s,积为p。
由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s<=41,因为如果s>41,那么P拿到41×(s-41)必定可以猜出s了(关于这一点,参考老马的证明,这一点很巧妙,可以省不少事情)。所以和s为{11,17,23,27,29,35,37,41}之一,设这个集合为A。
1).假设和是11。
11=2+9=3+8=4+7=5+6,如果P拿到18,18=3×6=2×9,只有2+9落在集合A中,所以P可以说出P1,但是这时候S能不能说出S2呢?我们来看,如果P拿到24,24=6×4=3×8=2×12,P同样可以说P1,因为至少有两种情况P都可以说出P1,所以A就无法断言S2,所以和不是11。
2).假设和是17。
17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,
很明显,由于P拿到4×13可以断言P1,而其他情况,P都无法断言P1,所以和是17。
3).假设和是23。
23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,
咱们先考虑含有2的n次幂或者含有大质数的那些组,如果P拿到4×19或7×16都可以断言P1,所以和不是23。
4).假设和是27。如果P拿到8×19或4×23都可以断言P1,所以和不是27。
5).假设和是29。如果P拿到13×16或7×22都可以断言P1,所以和不是29。
6).假设和是35。如果P拿到16×19或4×31都可以断言P1,所以和不是35。
7).假设和是37。如果P拿到8×29或11×26都可以断言P1,所以和不是37。
8).假设和是41。如果B拿到4×37或8×33,都可以断言P1,所以和不是41。
综上所述:这两个数是4和13。
说话依次编号为S1,P1,S2。
设这两个数为x,y,和为s,积为p。
由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s<=41,因为如果s>41,那么P拿到41×(s-41)必定可以猜出s了(关于这一点,参考老马的证明,这一点很巧妙,可以省不少事情)。所以和s为{11,17,23,27,29,35,37,41}之一,设这个集合为A。
1).假设和是11。
11=2+9=3+8=4+7=5+6,如果P拿到18,18=3×6=2×9,只有2+9落在集合A中,所以P可以说出P1,但是这时候S能不能说出S2呢?我们来看,如果P拿到24,24=6×4=3×8=2×12,P同样可以说P1,因为至少有两种情况P都可以说出P1,所以A就无法断言S2,所以和不是11。
2).假设和是17。
17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,
很明显,由于P拿到4×13可以断言P1,而其他情况,P都无法断言P1,所以和是17。
3).假设和是23。
23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,
咱们先考虑含有2的n次幂或者含有大质数的那些组,如果P拿到4×19或7×16都可以断言P1,所以和不是23。
4).假设和是27。如果P拿到8×19或4×23都可以断言P1,所以和不是27。
5).假设和是29。如果P拿到13×16或7×22都可以断言P1,所以和不是29。
6).假设和是35。如果P拿到16×19或4×31都可以断言P1,所以和不是35。
7).假设和是37。如果P拿到8×29或11×26都可以断言P1,所以和不是37。
8).假设和是41。如果B拿到4×37或8×33,都可以断言P1,所以和不是41。
综上所述:这两个数是4和13。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |