
如图,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=[ ]°
1个回答
2013-08-16
展开全部
解:连接DO并延长,
∵四边形OABC为平行四边形,
∴∠B=∠AOC,
∵∠AOC=2∠ADC,
∴∠B=2∠ADC,
∵四边形ABCD是⊙O的内接四边形,
∴∠B+∠ADC=180°,
∴3∠ADC=180°,
∴∠ADC=60°,
∴∠B=∠AOC=120°,
∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,
∴∠OAD+∠OCD=(∠1+∠2)-(∠ADO+∠CDO)=∠AOC-∠ADC=120°-60°=60°.
请点击“采纳为答案”
∵四边形OABC为平行四边形,
∴∠B=∠AOC,
∵∠AOC=2∠ADC,
∴∠B=2∠ADC,
∵四边形ABCD是⊙O的内接四边形,
∴∠B+∠ADC=180°,
∴3∠ADC=180°,
∴∠ADC=60°,
∴∠B=∠AOC=120°,
∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,
∴∠OAD+∠OCD=(∠1+∠2)-(∠ADO+∠CDO)=∠AOC-∠ADC=120°-60°=60°.
请点击“采纳为答案”
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询