如图,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=[ ]°

匿名用户
2013-08-16
展开全部
解:连接DO并延长,
∵四边形OABC为平行四边形,
∴∠B=∠AOC,
∵∠AOC=2∠ADC,
∴∠B=2∠ADC,
∵四边形ABCD是⊙O的内接四边形,
∴∠B+∠ADC=180°,
∴3∠ADC=180°,
∴∠ADC=60°,
∴∠B=∠AOC=120°,
∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,
∴∠OAD+∠OCD=(∠1+∠2)-(∠ADO+∠CDO)=∠AOC-∠ADC=120°-60°=60°.

请点击“采纳为答案”
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式