
4个回答
展开全部
应用平方差公式分项计算
原式=(100^2-99^2)+(98^2-97^2)+......+(2^2-1^2)
=(100+99)(100-99)+(98+97)(98-97)+......+(2+1)(2-1)
=100+99+98+97+......+2+1
=(100+1)*100/2
=5050
原式=(100^2-99^2)+(98^2-97^2)+......+(2^2-1^2)
=(100+99)(100-99)+(98+97)(98-97)+......+(2+1)(2-1)
=100+99+98+97+......+2+1
=(100+1)*100/2
=5050
展开全部
=(100+99)(100-99)+(98+97)(98-97)+(96+95)(96-95)+......+(2+1)(2-1)
=100+99+98+97+96+95+......+5+3
=(100+1)*100/2-2-1
=5050-3
=5047
=100+99+98+97+96+95+......+5+3
=(100+1)*100/2-2-1
=5050-3
=5047
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
运用平方差公式;如100^2-99^2=100+99,如此推出原式=100+99+98+97……+2+1=5050
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=199+195++3=202x25=5050
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |