求120道数学题及答案!!!急用!! 15
我要六年级及初一上学期集合的!!小学是北师大版的初中就看着给!!!我只有15分了求人给题和答案!!!...
我要六年级及初一上学期集合的!!小学是北师大版的初中就看着给!!!我只有15分了求人给题和答案!!!
展开
2个回答
展开全部
1.填上合适的单位.
一瓶可乐的净含量是355
毫升
. 一台洗衣机的体积大约是150
立方分米
.
3.一个铁丝长48厘米.如果用这个铁丝做一个正方体框架,这个正方体的棱长是 4厘米,体积是 64立方厘米 ;如果用来做一个宽是3厘米,高是5厘米的长方体框架,这个长方体框架的长是 厘米.
4
4.一个长方体长8厘米,宽4.5厘米,高5厘米,把它切成两个长方体,表面积最多增加
平方厘米 80
5.至少要 个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是 平方厘米.
8600
二、选择题.(共40分)6.把长7厘米、宽5厘米、厚3厘米的长方体肥皂两块包装在一起,至少要用( B )平方厘米包装纸(接头处不计)A.127B.214C.242 7.一盒标有“净含量为650毫升”的长方体盒装酸奶,量得外包装长8厘米,宽5厘米,高15厘米,根据以上数据,你认为“净含量”的标注是( B )A.真实的B.虚假的C.无法确定 .如图:将右面的纸片折起来可以做成一个正方体.这个正方体的6号面的对面是( C )号面.A.2B.3C.4 9.一个正方体的棱长扩大3倍,表面积扩大( C )倍.A.3B.6C.9D.27 三、解决问题.(共30分)10.要粉刷一间长10米、宽6米、3米的仓库的四面墙壁,除去门窗面积23.8平方米外,粉刷的面积是多少平方米?解:(10×3+6×3)×2-23.8,
=(30+18)×2-23.8,
=48×2-23.8,
=96-23.8,
=72.2(平方米).
答:粉刷的面积是72.2平方米. 12.把一块棱长8厘米的正方体钢坯,锻造成长3.2分米,宽1分米的长方体钢板,这钢板有多厚?(损耗不计)分析:先利用正方体的体积V=a3求出这个正方体的钢坯的体积,再依据这块钢坯的体积不变,利用长方体的体积V=abh,即可求出这个钢板的厚度.解答:解:3.2分米=32厘米,1分米=10厘米,
(8×8×8)÷(32×10),
=512÷320,
=1.6(厘米).
答:这钢板厚1.6厘米.1.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?
解:设一张电影票价x元
(x-3)×(1+1/2)=(1+1/5)x
(1+1/5)x这一步是什么意思,为什么这么做
(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}
左边算式求出了总收入
(1+1/5)x{其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}
如此计算后得到总收入,使方程左右相等
2.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款
答案
取40%后,存款有
9600×(1-40%)=5760(元)
这时,乙有:5760÷2+120=3000(元)
乙原来有:3000÷(1-40%)=5000(元)
3.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?
答案
加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,
巧克力是奶糖的60/40=1。5倍
再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍
增加了3-1.5=1.5倍,说明30颗占1.5倍
奶糖=30/1.5=20颗
巧克力=1.5*20=30颗
奶糖=20-10=10颗
4.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?答案 小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)
5.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案 甲乙丙3人8天完成 :5/6-1/3=1/2 甲乙丙3人每天完成 :1/2÷8=1/16, 甲乙丙3人4天完成 :1/16×4=1/4 则甲做一天后乙做2天要做 :1/3-1/4=1/12 那么乙一天做 :[1/12-1/72×3]/2=1/48 则丙一天做 :1/16-1/72-1/48=1/36 则余下的由丙做要 :[1-5/6]÷1/36=6天 答:还需要6天
6.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元)0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.
7.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案 (100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元
8.一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人 解: 设需要增加x人 (40+x)(15-3)=40*15 x=10 所以需要增加10了仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?解:第1次运走:2/(2+7)=2/9. 64/(1-2/9-3/5)=360吨。 答:原仓库有360吨货物。
9.育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案 原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人
10.小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?答案 设小王做了a道,小李做了b道,小张做了c道 由题意1/2a=1/3b=1/8c c-a=72 解得a=24 b=36 c=96
11.甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?答案 设甲做了X个,则乙做了(242-X)个6X=5(242-X)X=110242-110=132(个)答:甲做了110个,乙做了132个
12.某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比答案 设男会员是3N,则女会员是2N,总人是:5N 甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N 丙级有:5N*7/25=7/5N 丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N 那么丙组中男女之比是:N/2:9/10N=5:9
13.甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40)÷20=5人甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人丙村需要的人数:5×5=25人 或 20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54×20=1080元乙村应得的工钱: 54×5=270元
14.李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?答案设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x则0.1X=2aX a=0.05
15..哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?解:设哈利波特答对2X题,答错X题20×2X-6X=68 40X-6X=68 34X=68 X=2答对:2×2=4题共有:4+2=6题
16.爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。答案 设可免费携带的重量为x kg,则:(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;解方程:x=30
17.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船? 答案 解法一:设船数为X,则 (15X+9)/18=X-1 15X+9=18X-18 27=3X X=9 答:有9只船。解法二:(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船 8+1=9只船
课内知识:368-199等于多少呢?
课内知识:操场上的学生们进行队列表演,他们排成了8行8列的正方形队列,如果去掉一行一列,请问要去掉多少人?还剩多少人?
课外趣题:有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下5个数的平均数是20。求去掉的两个数的乘积。
课内知识:(1686+1683+1689+1681+1691+1685+1687+1678)÷8等于多少?
课外趣题:若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第项。
课内知识:求4018和7257的最大公约数。
课外趣题:把一个自然数的各个数位上的数码相加,所得的和若不是一位数,则再把它的各个数位上的数码相加,直到和是一位数为止。将1—2009这2009个自然数都经过上述方法处理后,所得到的2009个数中,2和3哪个多?
1.368-199等于多少呢?
解答:原式=368-200+1
=168+1
=169
2.按数字规律填出下图中空缺的数:
1.操场上的学生们进行队列表演,他们排成了8行8列的正方形队列,如果去掉一行一列,请问要去掉多少人?还剩多少人?
解答:每行每列都有8个人,而这一行一列必有一个人是重复的,所以减少的人数是8×2-1=15(人),8×8-15=49(人)
2.有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下5个数的平均数是20。求去掉的两个数的乘积。
解答:第一个去掉的数是18×7-19×6=12,第二个去掉的数是19×6-20×5=14,这两个数的乘积为12×14=168
还可以用移多补少的方法:18-(19-18)×6=1219-(20-19)×5=1412×14=168
1.(1686+1683+1689+1681+1691+1685+1687+1678)÷8
解答:原式=(1680×8+6+3+9+1+11+5+7-2)÷8
=1680×8÷8+(6+3+9+1+11+5+7-2)÷8
=1680+40÷8
=1685
2.若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第项。
解答:在每相邻两项中间插入三项,则原数列的第10项之前共插入了3×9=27项,故原数列的第10项是新数列的第10+27=37项。
1.求4018和7257的最大公约数。
解答:(7257,4018)=(3239,4018)=(3239,779)=(123,779)=(123,41)=41
2.把一个自然数的各个数位上的数码相加,所得的和若不是一位数,则再把它的各个数位上的数码相加,直到和是一位数为止。将1—2009这2009个自然数都经过上述方法处理后,所得到的2009个数中,2和3哪个多?
解答:一个数除以9的余数就是它数字和除以9的余数,因此按照题目中的操作办法,每个数最后都会变成它除以9的余数。连续9个自然数除以9的余数都互不相同,2009÷9=223……2,说明这2009个数中除以9余2的有224个,余3的有223个,所以在最后得到的2009个数中,2比3多。
. 从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有 种.
2. 甲、乙、丙3个班各有三好学生3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有 种不同的推选方法.
3. 从甲、乙、丙三名同学中选出两名参加某天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动.有 种不同的选法.
4. 从a、b、c、d这4个字母中,每次取出3个按顺序排成一列,共有 种不同的排法.
5. 若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,则选派的方案有 种.
6. 有a,b,c,d,e共5个火车站,都有往返车,问车站间共需要准备 种火车票.
7. 某年全国足球甲级联赛有14个队参加,每队都要与其余各队在主、客场分别比赛一场,共进行 场比赛.
8. 由数字1、2、3、4、5、6可以组成 个没有重复数字的正整数.
9. 用0到9这10个数字可以组成 个没有重复数字的三位数.
10. (1)有5本不同的书,从中选出3本送给3位同学每人1本,共有 种不同的选法;
(2)有5种不同的书,要买3本送给3名同学每人1本,共有 种不同的选法.
11. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方式有 种.
12. (1)将18个人排成一排,不同的排法有 少种;
(2)将18个人排成两排,每排9人,不同的排法有 种;
(3)将18个人排成三排,每排6人,不同的排法有 种.
13. 5人站成一排,(1)其中甲、乙两人必须相邻,有 种不同的排法;
(2)其中甲、乙两人不能相邻,有 种不同的排法;
(3)其中甲不站排头、乙不站排尾,有 种不同的排法.
14. 5名学生和1名老师照相,老师不能站排头,也不能站排尾,共有 种不同的站法.
15. 4名学生和3名老师排成一排照相,老师不能排两端,且老师必须要排在一起的不同排法有 种.
16. 停车场有7个停车位,现在有4辆车要停放,若要使3个空位连在一起,则停放的方法有 种.
17. 在7名运动员中选出4名组成接力队参加4×100米比赛,那么甲、乙都不跑中间两棒的安排方法有 种.
18. 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有 种取法;
(2)从口袋内取出3个球,使其中含有1个黑球,有 种取法;
(3)从口袋内取出3个球,使其中不含黑球,有 种取法.
19. 甲,乙,丙,丁4个足球队举行单循环赛:
(1)共需比赛 场;
(2)冠亚军共有 种可能.
20. 按下列条件,从12人中选出5人,有 种不同选法.
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
21. 某歌舞团有7名演员,其中3名会唱歌,2名会跳舞,2名既会唱歌又会跳舞,现在要从7名演员中选出2人,一人唱歌,一人跳舞,到农村演出,问有 种选法.
22. 从6名男生和4名女生中,选出3名男生和2名女生分别承担A,B,C,D,E五项工作,一共有 种不同的分配方法.
一、选择题(本题共10小题,每小题4分,满分40分)
1、下列运算正确的是( )
A. 4 =±2 B.2-3=-6 C.x2•x3=x6 D.(-2x)4=16x4
2、随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2006年海外学习汉语的学生人数已达38 200 000人,用科学记数法表示为( )人(保留3个有效数字)
A.0.382×10 B.3.82×10 C.38.2×10 D.382×10
4、 在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是 ( )
A. B. C. D.
6、 甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风筝中 ( )
同学 甲 乙 丙
放出风筝线长 100m I00m 90m
线与地面夹角 40° 45° 60°
A .甲的最高 B .丙的最高 C .乙的最低 D .丙的最低
7、国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市
某中学国家免费提供教科书补助的部分情况.
七 八 九 合计
每人免费补助金额(元) 110 90 50
人数(人) 80 300
免费补助总金额(元) 4000 26200
如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,
根据题意列出方程组为( )
A. B .
C. D .
8、 有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且
如图所示的连心线分别构成正六边形,平行四边形和正三角形,将圆心
连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则( )
14、2007年1月1日起,某市全面推行农村合作医疗,农民每年每人只拿
出10元就可以享受合作医疗,住院费报销办法如下表:
住院费(元) 报销率(%)
不超过3000元的部分 15
3000——4000的部分 25
4000——5000的部分 30
5000——10000的部分 35
10000——20000的部分 40
超过20000的部分 45
某人住院费报销了880元,则住院费为__________元.
1、点B在y轴上,位于原点上方,距离坐标原点4单位长度,则此点的坐标为 ;
6、一个正数x的平方根是2a 3与5 a,则a是_________.
7、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_____________.
8、如果25x2=36,那么x的值是______________.
9、已知AD是 ABC的边BC上的中线,AB=15cm,AC=10cm,则 ABD的周长比 ABD的周长大__________.
10、如果三角形的一个外角等于与它相邻的内角的2倍,等于与它不相邻的一个内角的4倍,则此三角形各内角的度数是_______________.
11、已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是___________.
12、将点A先向下平移3个单位,再向右平移2个单位后,则得到点B( 2,5),则点A的坐标为 .
3、在平面直角坐标系中,标出下列个点:
点A在y轴上,位于原点上方,距离原点2个单位长度;
点B在x轴上,位于原点右侧,距离原点1个单位长度;
点C在x轴上,y轴右侧,距离每条两条坐标轴都是2个单位长度;
点D在x轴上,位于原点右侧,距离原点3个单位长度;
点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。
依次连接这些点,你觉得它像什么图形?(8分)
5、计算正五边形和正十边形的每一个内角度数。(5分)
6、一个多边形的内角和等于1260 ,它是几边形?(5分)
8、按要求解答下列方程(共8分)
(1) x+2y=9 (2) 2x-y=5
3x-2y=-1 3x+4y=2
三、二元一次方程组应用(每题7分,共35分)
1、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量之比(按瓶计算)为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装个两种各有多少瓶?
2、2台大收割机5台小收割机工作2小时收割小麦3。6公顷,3台大收割机和2抬小收割机5小时收割小麦8公顷,一台大收割机和一台小收割机1小时各收割小麦多少公顷?
3、A市到B市的航线长1200km,一架飞机从A市顺风飞往B市需要2小时30分,从B市逆风飞往A市需要3小时20分,求飞机的平均速度和风速。
4、用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?
一瓶可乐的净含量是355
毫升
. 一台洗衣机的体积大约是150
立方分米
.
3.一个铁丝长48厘米.如果用这个铁丝做一个正方体框架,这个正方体的棱长是 4厘米,体积是 64立方厘米 ;如果用来做一个宽是3厘米,高是5厘米的长方体框架,这个长方体框架的长是 厘米.
4
4.一个长方体长8厘米,宽4.5厘米,高5厘米,把它切成两个长方体,表面积最多增加
平方厘米 80
5.至少要 个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是 平方厘米.
8600
二、选择题.(共40分)6.把长7厘米、宽5厘米、厚3厘米的长方体肥皂两块包装在一起,至少要用( B )平方厘米包装纸(接头处不计)A.127B.214C.242 7.一盒标有“净含量为650毫升”的长方体盒装酸奶,量得外包装长8厘米,宽5厘米,高15厘米,根据以上数据,你认为“净含量”的标注是( B )A.真实的B.虚假的C.无法确定 .如图:将右面的纸片折起来可以做成一个正方体.这个正方体的6号面的对面是( C )号面.A.2B.3C.4 9.一个正方体的棱长扩大3倍,表面积扩大( C )倍.A.3B.6C.9D.27 三、解决问题.(共30分)10.要粉刷一间长10米、宽6米、3米的仓库的四面墙壁,除去门窗面积23.8平方米外,粉刷的面积是多少平方米?解:(10×3+6×3)×2-23.8,
=(30+18)×2-23.8,
=48×2-23.8,
=96-23.8,
=72.2(平方米).
答:粉刷的面积是72.2平方米. 12.把一块棱长8厘米的正方体钢坯,锻造成长3.2分米,宽1分米的长方体钢板,这钢板有多厚?(损耗不计)分析:先利用正方体的体积V=a3求出这个正方体的钢坯的体积,再依据这块钢坯的体积不变,利用长方体的体积V=abh,即可求出这个钢板的厚度.解答:解:3.2分米=32厘米,1分米=10厘米,
(8×8×8)÷(32×10),
=512÷320,
=1.6(厘米).
答:这钢板厚1.6厘米.1.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?
解:设一张电影票价x元
(x-3)×(1+1/2)=(1+1/5)x
(1+1/5)x这一步是什么意思,为什么这么做
(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}
左边算式求出了总收入
(1+1/5)x{其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}
如此计算后得到总收入,使方程左右相等
2.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款
答案
取40%后,存款有
9600×(1-40%)=5760(元)
这时,乙有:5760÷2+120=3000(元)
乙原来有:3000÷(1-40%)=5000(元)
3.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?
答案
加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,
巧克力是奶糖的60/40=1。5倍
再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍
增加了3-1.5=1.5倍,说明30颗占1.5倍
奶糖=30/1.5=20颗
巧克力=1.5*20=30颗
奶糖=20-10=10颗
4.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?答案 小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)
5.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案 甲乙丙3人8天完成 :5/6-1/3=1/2 甲乙丙3人每天完成 :1/2÷8=1/16, 甲乙丙3人4天完成 :1/16×4=1/4 则甲做一天后乙做2天要做 :1/3-1/4=1/12 那么乙一天做 :[1/12-1/72×3]/2=1/48 则丙一天做 :1/16-1/72-1/48=1/36 则余下的由丙做要 :[1-5/6]÷1/36=6天 答:还需要6天
6.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元)0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.
7.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案 (100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元
8.一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人 解: 设需要增加x人 (40+x)(15-3)=40*15 x=10 所以需要增加10了仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?解:第1次运走:2/(2+7)=2/9. 64/(1-2/9-3/5)=360吨。 答:原仓库有360吨货物。
9.育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案 原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人
10.小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?答案 设小王做了a道,小李做了b道,小张做了c道 由题意1/2a=1/3b=1/8c c-a=72 解得a=24 b=36 c=96
11.甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?答案 设甲做了X个,则乙做了(242-X)个6X=5(242-X)X=110242-110=132(个)答:甲做了110个,乙做了132个
12.某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比答案 设男会员是3N,则女会员是2N,总人是:5N 甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N 丙级有:5N*7/25=7/5N 丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N 那么丙组中男女之比是:N/2:9/10N=5:9
13.甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40)÷20=5人甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人丙村需要的人数:5×5=25人 或 20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54×20=1080元乙村应得的工钱: 54×5=270元
14.李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?答案设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x则0.1X=2aX a=0.05
15..哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?解:设哈利波特答对2X题,答错X题20×2X-6X=68 40X-6X=68 34X=68 X=2答对:2×2=4题共有:4+2=6题
16.爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。答案 设可免费携带的重量为x kg,则:(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;解方程:x=30
17.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船? 答案 解法一:设船数为X,则 (15X+9)/18=X-1 15X+9=18X-18 27=3X X=9 答:有9只船。解法二:(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船 8+1=9只船
课内知识:368-199等于多少呢?
课内知识:操场上的学生们进行队列表演,他们排成了8行8列的正方形队列,如果去掉一行一列,请问要去掉多少人?还剩多少人?
课外趣题:有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下5个数的平均数是20。求去掉的两个数的乘积。
课内知识:(1686+1683+1689+1681+1691+1685+1687+1678)÷8等于多少?
课外趣题:若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第项。
课内知识:求4018和7257的最大公约数。
课外趣题:把一个自然数的各个数位上的数码相加,所得的和若不是一位数,则再把它的各个数位上的数码相加,直到和是一位数为止。将1—2009这2009个自然数都经过上述方法处理后,所得到的2009个数中,2和3哪个多?
1.368-199等于多少呢?
解答:原式=368-200+1
=168+1
=169
2.按数字规律填出下图中空缺的数:
1.操场上的学生们进行队列表演,他们排成了8行8列的正方形队列,如果去掉一行一列,请问要去掉多少人?还剩多少人?
解答:每行每列都有8个人,而这一行一列必有一个人是重复的,所以减少的人数是8×2-1=15(人),8×8-15=49(人)
2.有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下5个数的平均数是20。求去掉的两个数的乘积。
解答:第一个去掉的数是18×7-19×6=12,第二个去掉的数是19×6-20×5=14,这两个数的乘积为12×14=168
还可以用移多补少的方法:18-(19-18)×6=1219-(20-19)×5=1412×14=168
1.(1686+1683+1689+1681+1691+1685+1687+1678)÷8
解答:原式=(1680×8+6+3+9+1+11+5+7-2)÷8
=1680×8÷8+(6+3+9+1+11+5+7-2)÷8
=1680+40÷8
=1685
2.若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第项。
解答:在每相邻两项中间插入三项,则原数列的第10项之前共插入了3×9=27项,故原数列的第10项是新数列的第10+27=37项。
1.求4018和7257的最大公约数。
解答:(7257,4018)=(3239,4018)=(3239,779)=(123,779)=(123,41)=41
2.把一个自然数的各个数位上的数码相加,所得的和若不是一位数,则再把它的各个数位上的数码相加,直到和是一位数为止。将1—2009这2009个自然数都经过上述方法处理后,所得到的2009个数中,2和3哪个多?
解答:一个数除以9的余数就是它数字和除以9的余数,因此按照题目中的操作办法,每个数最后都会变成它除以9的余数。连续9个自然数除以9的余数都互不相同,2009÷9=223……2,说明这2009个数中除以9余2的有224个,余3的有223个,所以在最后得到的2009个数中,2比3多。
. 从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有 种.
2. 甲、乙、丙3个班各有三好学生3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有 种不同的推选方法.
3. 从甲、乙、丙三名同学中选出两名参加某天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动.有 种不同的选法.
4. 从a、b、c、d这4个字母中,每次取出3个按顺序排成一列,共有 种不同的排法.
5. 若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,则选派的方案有 种.
6. 有a,b,c,d,e共5个火车站,都有往返车,问车站间共需要准备 种火车票.
7. 某年全国足球甲级联赛有14个队参加,每队都要与其余各队在主、客场分别比赛一场,共进行 场比赛.
8. 由数字1、2、3、4、5、6可以组成 个没有重复数字的正整数.
9. 用0到9这10个数字可以组成 个没有重复数字的三位数.
10. (1)有5本不同的书,从中选出3本送给3位同学每人1本,共有 种不同的选法;
(2)有5种不同的书,要买3本送给3名同学每人1本,共有 种不同的选法.
11. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方式有 种.
12. (1)将18个人排成一排,不同的排法有 少种;
(2)将18个人排成两排,每排9人,不同的排法有 种;
(3)将18个人排成三排,每排6人,不同的排法有 种.
13. 5人站成一排,(1)其中甲、乙两人必须相邻,有 种不同的排法;
(2)其中甲、乙两人不能相邻,有 种不同的排法;
(3)其中甲不站排头、乙不站排尾,有 种不同的排法.
14. 5名学生和1名老师照相,老师不能站排头,也不能站排尾,共有 种不同的站法.
15. 4名学生和3名老师排成一排照相,老师不能排两端,且老师必须要排在一起的不同排法有 种.
16. 停车场有7个停车位,现在有4辆车要停放,若要使3个空位连在一起,则停放的方法有 种.
17. 在7名运动员中选出4名组成接力队参加4×100米比赛,那么甲、乙都不跑中间两棒的安排方法有 种.
18. 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有 种取法;
(2)从口袋内取出3个球,使其中含有1个黑球,有 种取法;
(3)从口袋内取出3个球,使其中不含黑球,有 种取法.
19. 甲,乙,丙,丁4个足球队举行单循环赛:
(1)共需比赛 场;
(2)冠亚军共有 种可能.
20. 按下列条件,从12人中选出5人,有 种不同选法.
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
21. 某歌舞团有7名演员,其中3名会唱歌,2名会跳舞,2名既会唱歌又会跳舞,现在要从7名演员中选出2人,一人唱歌,一人跳舞,到农村演出,问有 种选法.
22. 从6名男生和4名女生中,选出3名男生和2名女生分别承担A,B,C,D,E五项工作,一共有 种不同的分配方法.
一、选择题(本题共10小题,每小题4分,满分40分)
1、下列运算正确的是( )
A. 4 =±2 B.2-3=-6 C.x2•x3=x6 D.(-2x)4=16x4
2、随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2006年海外学习汉语的学生人数已达38 200 000人,用科学记数法表示为( )人(保留3个有效数字)
A.0.382×10 B.3.82×10 C.38.2×10 D.382×10
4、 在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是 ( )
A. B. C. D.
6、 甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风筝中 ( )
同学 甲 乙 丙
放出风筝线长 100m I00m 90m
线与地面夹角 40° 45° 60°
A .甲的最高 B .丙的最高 C .乙的最低 D .丙的最低
7、国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市
某中学国家免费提供教科书补助的部分情况.
七 八 九 合计
每人免费补助金额(元) 110 90 50
人数(人) 80 300
免费补助总金额(元) 4000 26200
如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,
根据题意列出方程组为( )
A. B .
C. D .
8、 有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且
如图所示的连心线分别构成正六边形,平行四边形和正三角形,将圆心
连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则( )
14、2007年1月1日起,某市全面推行农村合作医疗,农民每年每人只拿
出10元就可以享受合作医疗,住院费报销办法如下表:
住院费(元) 报销率(%)
不超过3000元的部分 15
3000——4000的部分 25
4000——5000的部分 30
5000——10000的部分 35
10000——20000的部分 40
超过20000的部分 45
某人住院费报销了880元,则住院费为__________元.
1、点B在y轴上,位于原点上方,距离坐标原点4单位长度,则此点的坐标为 ;
6、一个正数x的平方根是2a 3与5 a,则a是_________.
7、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_____________.
8、如果25x2=36,那么x的值是______________.
9、已知AD是 ABC的边BC上的中线,AB=15cm,AC=10cm,则 ABD的周长比 ABD的周长大__________.
10、如果三角形的一个外角等于与它相邻的内角的2倍,等于与它不相邻的一个内角的4倍,则此三角形各内角的度数是_______________.
11、已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是___________.
12、将点A先向下平移3个单位,再向右平移2个单位后,则得到点B( 2,5),则点A的坐标为 .
3、在平面直角坐标系中,标出下列个点:
点A在y轴上,位于原点上方,距离原点2个单位长度;
点B在x轴上,位于原点右侧,距离原点1个单位长度;
点C在x轴上,y轴右侧,距离每条两条坐标轴都是2个单位长度;
点D在x轴上,位于原点右侧,距离原点3个单位长度;
点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。
依次连接这些点,你觉得它像什么图形?(8分)
5、计算正五边形和正十边形的每一个内角度数。(5分)
6、一个多边形的内角和等于1260 ,它是几边形?(5分)
8、按要求解答下列方程(共8分)
(1) x+2y=9 (2) 2x-y=5
3x-2y=-1 3x+4y=2
三、二元一次方程组应用(每题7分,共35分)
1、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量之比(按瓶计算)为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装个两种各有多少瓶?
2、2台大收割机5台小收割机工作2小时收割小麦3。6公顷,3台大收割机和2抬小收割机5小时收割小麦8公顷,一台大收割机和一台小收割机1小时各收割小麦多少公顷?
3、A市到B市的航线长1200km,一架飞机从A市顺风飞往B市需要2小时30分,从B市逆风飞往A市需要3小时20分,求飞机的平均速度和风速。
4、用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询