三角函数sin cos tan cot 之间转换的公式
2个回答
推荐于2017-11-26
展开全部
tanA=sinA/ cos AtanA=1/cotA(sinA)^2+( cos A)^2=1 正弦定理a/sinA=b/sinB=c/sinC余弦定理a^2=b^2+c^2-2bc*cosA
b^2=c^2+a^2-2ac*cosB
c^2=a^2+b^2-2ab*cosC
(1)二倍角公式:
(a)sin2a=2×sina×cosa
(b)cos2a=cosa^2-sina^2=2cosa^2-1=1-2sina^2
(c)tan2a= 2tana/(1-tana^2)
(2)以正切表示二倍角
(a)sin2a= 2tana/(1+tana^2)
(b)cos2a= (1-tana^2)/(1+tana^2)
(c) tan2a= 2tana/(1-tana^2)
(3)三倍角公式
(a)sin3a=3sina -4sina^3
(b)cos3a=4cosa^3 -3cosa1、积化和差公式:
sinαsinβ=-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
sinαcosβ=1/2[sin(α+β)+sin(α-β)]
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
2、和差化积公式
sinθ+sinφ=2sin[(θ+φ)/2]cos[(φ-θ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(φ-θ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]sin[(φ-θ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
b^2=c^2+a^2-2ac*cosB
c^2=a^2+b^2-2ab*cosC
(1)二倍角公式:
(a)sin2a=2×sina×cosa
(b)cos2a=cosa^2-sina^2=2cosa^2-1=1-2sina^2
(c)tan2a= 2tana/(1-tana^2)
(2)以正切表示二倍角
(a)sin2a= 2tana/(1+tana^2)
(b)cos2a= (1-tana^2)/(1+tana^2)
(c) tan2a= 2tana/(1-tana^2)
(3)三倍角公式
(a)sin3a=3sina -4sina^3
(b)cos3a=4cosa^3 -3cosa1、积化和差公式:
sinαsinβ=-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
sinαcosβ=1/2[sin(α+β)+sin(α-β)]
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
2、和差化积公式
sinθ+sinφ=2sin[(θ+φ)/2]cos[(φ-θ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(φ-θ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]sin[(φ-θ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
2013-08-17
展开全部
tanA=sinA/ cos AtanA=1/cotA(sinA)^2+( cos A)^2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询