平行四边形,矩形,菱形,正方形的性质?判定方法?
2013-08-19
展开全部
性质:平行四边形:对边平行且相等,对角相等,两条对角线互相平分,中心对称。
矩形:对边平行且相等,四个角都是直角,两条对角线互相平分且相等,轴对称,中心对称。
菱形:对边平行,四条边都相等,对角相等,两条对角线互相垂直平分,每条对角线平分一组对角,轴对称,中心对称。
正方形:对边平行且四边都相等,四个角都是直角,两条对角线互相平分且相等,每条对角线平分一组对角,轴对称,中心对称。
判定方法:平行四边形:(1)两组对边分别相等的四边形是平行四边形。
(2)两组对边分别平行的四边形是平行四边形。
(3)一组对边平行且相等的四边形是平行四边形。
(4)两组对角分别相等的四边形。
(5)两条对角线互相平分的四边形是平行四边形 。
矩形:(1)有三个角是直角的四边形是矩形。
(2)有一个角是直角的平行四边形是矩形。
(3)对角线相等的平行四边形是矩形。
菱形:(1)四边都相等的四边形是菱形。
(2)有一组邻边相等的平行四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
正方形:(1)有一个角是直角,一组邻边相等的平行四边形是正方形。
(2)有一组邻边相等的矩形是正方形。
(3)有一个角是直角的菱形是正方形。
绝对准确,以后有问题可以再问我,百问不厌?
矩形:对边平行且相等,四个角都是直角,两条对角线互相平分且相等,轴对称,中心对称。
菱形:对边平行,四条边都相等,对角相等,两条对角线互相垂直平分,每条对角线平分一组对角,轴对称,中心对称。
正方形:对边平行且四边都相等,四个角都是直角,两条对角线互相平分且相等,每条对角线平分一组对角,轴对称,中心对称。
判定方法:平行四边形:(1)两组对边分别相等的四边形是平行四边形。
(2)两组对边分别平行的四边形是平行四边形。
(3)一组对边平行且相等的四边形是平行四边形。
(4)两组对角分别相等的四边形。
(5)两条对角线互相平分的四边形是平行四边形 。
矩形:(1)有三个角是直角的四边形是矩形。
(2)有一个角是直角的平行四边形是矩形。
(3)对角线相等的平行四边形是矩形。
菱形:(1)四边都相等的四边形是菱形。
(2)有一组邻边相等的平行四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
正方形:(1)有一个角是直角,一组邻边相等的平行四边形是正方形。
(2)有一组邻边相等的矩形是正方形。
(3)有一个角是直角的菱形是正方形。
绝对准确,以后有问题可以再问我,百问不厌?
2013-08-19
展开全部
平行四边形的性质和判定
定义:两组对边分别平行的四边形叫做平行四边形.
性质:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分 .
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形 .
菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:
对角线互相垂直平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角.
判定:
一组邻边相等的平行四边形是菱形
对角线互相垂直的平行四边形是菱形
四边相等的四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;
菱形周界为边长的四倍:
顺次连接菱形各边中点 为矩形
正方形是特殊的菱形
矩形:有一个角是直角的平行四边形叫做矩形,也就是长方形。
矩形有以下性质:
1.矩形的四个叫都是直角
2.矩形的对角线相等且互相平分
3.对边相等且平行
矩形的判定:
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。矩形的中点四边形是菱形
正方形
性质:
边:两组对边分别平行;四条边都相等;相邻边互相垂直
内角:四个角都是90°;
对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角。
判定:
1:对角线相等的菱形是正方形
2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形
3:四边相等,有三个角是直角的四边形是正方形
4:一组邻边相等的矩形是正方形
5:一组邻边相等且有一个角是直角的平行四边形是正方形
6:四边均相等,对角线互相垂直平分且相等的平面四边形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。正方形的中点四边形是正方形。
定义:两组对边分别平行的四边形叫做平行四边形.
性质:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分 .
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形 .
菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:
对角线互相垂直平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角.
判定:
一组邻边相等的平行四边形是菱形
对角线互相垂直的平行四边形是菱形
四边相等的四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;
菱形周界为边长的四倍:
顺次连接菱形各边中点 为矩形
正方形是特殊的菱形
矩形:有一个角是直角的平行四边形叫做矩形,也就是长方形。
矩形有以下性质:
1.矩形的四个叫都是直角
2.矩形的对角线相等且互相平分
3.对边相等且平行
矩形的判定:
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。矩形的中点四边形是菱形
正方形
性质:
边:两组对边分别平行;四条边都相等;相邻边互相垂直
内角:四个角都是90°;
对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角。
判定:
1:对角线相等的菱形是正方形
2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形
3:四边相等,有三个角是直角的四边形是正方形
4:一组邻边相等的矩形是正方形
5:一组邻边相等且有一个角是直角的平行四边形是正方形
6:四边均相等,对角线互相垂直平分且相等的平面四边形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。正方形的中点四边形是正方形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-19
展开全部
类 别\t 性 质\t 判 定
---
平行四边形 ①对边平行 ①两组对边分别平行的四边形
②对边相等 ②两组对边分别相等的四边形
③对角相等 ③一组对边平行且相等的四边形
④对角线互相平分 ④对角线互相平分的四边形
--
矩形 ①具有平行四边形的性质 ①一个内角是直角的平行四边形是
矩形。
②四个角都是直角 ②对角线相等的平行四边形是矩形。
③对角线相等 ③三个角是直角的四边形是矩形。
--
菱形 ①具有平行四边形的性质 ①一组邻边相等的平行四边形是菱形。
②四条边都相等 ②对角线互相垂直的平行四边形是
菱形。
③对角线互相垂直 ③四条边都相等的四边形是菱形。
④每一条对角线平分一组对角
--
正方形 具有平行四边形、矩形、 ①对角线互相垂直的矩形是正方形。
菱形的一切性质 ②一组邻边相等的矩形是正方形。
③一个角是直角的菱形是正方形。
④对角线相等的菱形是正方形。
---
平行四边形 ①对边平行 ①两组对边分别平行的四边形
②对边相等 ②两组对边分别相等的四边形
③对角相等 ③一组对边平行且相等的四边形
④对角线互相平分 ④对角线互相平分的四边形
--
矩形 ①具有平行四边形的性质 ①一个内角是直角的平行四边形是
矩形。
②四个角都是直角 ②对角线相等的平行四边形是矩形。
③对角线相等 ③三个角是直角的四边形是矩形。
--
菱形 ①具有平行四边形的性质 ①一组邻边相等的平行四边形是菱形。
②四条边都相等 ②对角线互相垂直的平行四边形是
菱形。
③对角线互相垂直 ③四条边都相等的四边形是菱形。
④每一条对角线平分一组对角
--
正方形 具有平行四边形、矩形、 ①对角线互相垂直的矩形是正方形。
菱形的一切性质 ②一组邻边相等的矩形是正方形。
③一个角是直角的菱形是正方形。
④对角线相等的菱形是正方形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-19
展开全部
平行四边形有以下性质:
1.平行四边形的对边平行且相等
2.平行四边形的对角相等
3.平行四边形的两条对角线互相平分
4.平行四边形是空间图形
5.平行四边形的对角相等,两邻角互补
6.平行四边形是中心对称图形,对称中心是两对角线的交点
7.过平行四边形对角线交点的直线将平行四边形分成全等的两部分图形
8.设P是平行四边形ABCD对角线外一点,则2PA^2+2PC^2-AC^2=2PB^2+2PD^2-BD^2
另外,由上列定义可知:平行四边行的两组对边分别平行
平行四边形的判定方法:
1.两组对边分别相等的四边形是平行四边形
2.对角线互相平分的四边形是平行四边形
3.一组对边平行且相等的四边形是平行四边形
4.两组对角分别相等的四边形是平行四边形
5.一组对边相等,一组对角相等的四边形是平行四边形
矩形性质:
1.矩形的四个角都是直角
2.矩形的对角线相等且互相平分
3.对边相等且平行
4.矩形所在平面内任一点到其两对角线端点的距离的平方和相等
5.矩形是轴对称图形,对称轴是任何一组对边中点的连线
矩形判定:
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
4.四个内角都相等的四边形为矩形
5.关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形
6.对于平行四边形,若存在一点到两双对顶点的距离的平方和相等,则此平行四边形为矩形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。矩形的中点四边形是菱形。
正方形
性质:
边:两组对边分别平行;四条边都相等;相邻边互相垂直
内角:四个角都是90°;
对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角。
判定:
1:对角线相等的菱形是正方形
2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形
3:四边相等,有三个角是直角的四边形是正方形
4:一组邻边相等的矩形是正方形
5:一组邻边相等且有一个角是直角的平行四边形是正方形
6:四边均相等,对角线互相垂直平分且相等的平面四边形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。正方形的中点四边形是正方形。
菱形性质
对角线互相垂直且平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角.
菱形是轴对称图形,对称轴是两条对角线
判定
一组邻边相等的平行四边形是菱形
对角线互相垂直平分的四边形是菱形
四边相等的四边形是菱形
关于两条对角线都成轴对称的四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。
1.平行四边形的对边平行且相等
2.平行四边形的对角相等
3.平行四边形的两条对角线互相平分
4.平行四边形是空间图形
5.平行四边形的对角相等,两邻角互补
6.平行四边形是中心对称图形,对称中心是两对角线的交点
7.过平行四边形对角线交点的直线将平行四边形分成全等的两部分图形
8.设P是平行四边形ABCD对角线外一点,则2PA^2+2PC^2-AC^2=2PB^2+2PD^2-BD^2
另外,由上列定义可知:平行四边行的两组对边分别平行
平行四边形的判定方法:
1.两组对边分别相等的四边形是平行四边形
2.对角线互相平分的四边形是平行四边形
3.一组对边平行且相等的四边形是平行四边形
4.两组对角分别相等的四边形是平行四边形
5.一组对边相等,一组对角相等的四边形是平行四边形
矩形性质:
1.矩形的四个角都是直角
2.矩形的对角线相等且互相平分
3.对边相等且平行
4.矩形所在平面内任一点到其两对角线端点的距离的平方和相等
5.矩形是轴对称图形,对称轴是任何一组对边中点的连线
矩形判定:
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
4.四个内角都相等的四边形为矩形
5.关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形
6.对于平行四边形,若存在一点到两双对顶点的距离的平方和相等,则此平行四边形为矩形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。矩形的中点四边形是菱形。
正方形
性质:
边:两组对边分别平行;四条边都相等;相邻边互相垂直
内角:四个角都是90°;
对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角。
判定:
1:对角线相等的菱形是正方形
2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形
3:四边相等,有三个角是直角的四边形是正方形
4:一组邻边相等的矩形是正方形
5:一组邻边相等且有一个角是直角的平行四边形是正方形
6:四边均相等,对角线互相垂直平分且相等的平面四边形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。正方形的中点四边形是正方形。
菱形性质
对角线互相垂直且平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角.
菱形是轴对称图形,对称轴是两条对角线
判定
一组邻边相等的平行四边形是菱形
对角线互相垂直平分的四边形是菱形
四边相等的四边形是菱形
关于两条对角线都成轴对称的四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询