不等式的证明,这道题除了数学归纳法,不等式放缩怎么解

U板栗
2013-08-24 · TA获得超过258个赞
知道小有建树答主
回答量:93
采纳率:0%
帮助的人:128万
展开全部
由√(n-1)+√n<2√n,两边倒过来化简得:1/√n<2/[√n+√(n-1)]=2×[√n-√(n-1)]
故原证不等式可化为:
1+1/√2+1/√3+...+1/√n<2×[√n-√(n-1)+√(n-1)-√(n-2)+...+√2-1=2×(√n-1)
故即证明:2×(√n-1)<√2(√(2n+1)-1)
下面证明:消去个√2有:√2×(√n-1)<√(2n+1)-1
将左边张开,把右边的1移过去得:√2n-√2+1<√(2n+1)
进一步化简得:-√2+1<√(2n+1)-√2n
因为-√2+1<0,0<√(2n+1)-√2n,所以-√2+1<√(2n+1)-√2n成立
故原所证明不等式成立,证毕
不懂可追问,欢迎采纳
WM_THU
2013-08-17 · TA获得超过7164个赞
知道大有可为答主
回答量:4285
采纳率:80%
帮助的人:3927万
展开全部
学过微积分吗?坐标的级数和可以放大成一个积分,积分结果可以和右边直接比大小了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式