求解高一数学题
1个回答
展开全部
解:(1)∵3tSn-(2t+3)Sn-1=3t ①
∴3tSn+1-(2t+3)Sn=3t ②
②-①得3t(Sn+1-Sn)-(2t+3)(Sn-Sn-1)=0
∴3tan+1-(2t+3)an=0,∵t>0
∴
∴{an}是首项为a1=1,公比为q=的等比数列.
(2)∵f(t)= =+
bn=f()
∴bn=+bn-1
∴bn-bn-1= (n≥2)
∴{bn}是首项为b1=1,公差为d=的等差数列,于是bn=1+(n-1)=(2n+1
∴3tSn+1-(2t+3)Sn=3t ②
②-①得3t(Sn+1-Sn)-(2t+3)(Sn-Sn-1)=0
∴3tan+1-(2t+3)an=0,∵t>0
∴
∴{an}是首项为a1=1,公比为q=的等比数列.
(2)∵f(t)= =+
bn=f()
∴bn=+bn-1
∴bn-bn-1= (n≥2)
∴{bn}是首项为b1=1,公差为d=的等差数列,于是bn=1+(n-1)=(2n+1
追答
谢谢
追问
我才是,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询