已知数列{an}的通项公式为an=2^(n-1) +1 则a1Cn^0 +a2Cn^1+a3Cn^2+...+a[n+1]Cn^n?
a1×Cn0+a2×Cn1……+a(n+1)×Cnn=(2^0+1)*C(n,0)+(2^1+1)C(n,1)+(2^2+1)C(n,2)+.......+(2^n+1)...
a1×Cn0+a2×Cn1……+a(n+1)×Cnn
=(2^0+1)*C(n,0)+(2^1+1)C(n,1)+(2^2+1)C(n,2)+.......+(2^n +1)*C(n,n)
=[2^0*C(n,0)+2^1*C(n,1)+2^2*C(n,2)+.......+2^n *C(n,n)]+[C(n,0)+C(n,1)+C(n,2)+.......+C(n,n)]
=(1+2)^n+2^n
=3^n+2^n
此过程中的倒数第二步如何解释? 展开
=(2^0+1)*C(n,0)+(2^1+1)C(n,1)+(2^2+1)C(n,2)+.......+(2^n +1)*C(n,n)
=[2^0*C(n,0)+2^1*C(n,1)+2^2*C(n,2)+.......+2^n *C(n,n)]+[C(n,0)+C(n,1)+C(n,2)+.......+C(n,n)]
=(1+2)^n+2^n
=3^n+2^n
此过程中的倒数第二步如何解释? 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询