如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点 5
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点(1)证明:BC1∥平面A1CD(2)设AA1=AC=CB=2,AB=2根号2,求三棱锥C-A1DE的...
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点
(1)证明:BC1∥平面A1CD
(2)设AA1=AC=CB=2,AB=2根号2,求三棱锥C-A1DE的体积 展开
(1)证明:BC1∥平面A1CD
(2)设AA1=AC=CB=2,AB=2根号2,求三棱锥C-A1DE的体积 展开
3个回答
展开全部
1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=2,AB=,求三棱锥C-A1DE的体积.
解:(1)连结AC1交A1C于点F,则F为AC1中点.
又D是AB中点,连结DF,则BC1∥DF.
因为DF平面A1CD,BC1平面A1CD,
所以BC1∥平面A1CD.
(2)因为ABC-A1B1C1是直三棱柱,所以AA1⊥CD.
由已知AC=CB,D为AB的中点,所以CD⊥AB.
又AA1∩AB=A,于是CD⊥平面ABB1A1.
由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,
故A1D2+DE2=A1E2,即DE⊥A1D.
所以VC-A1DE==1.
(2)设AA1=AC=CB=2,AB=,求三棱锥C-A1DE的体积.
解:(1)连结AC1交A1C于点F,则F为AC1中点.
又D是AB中点,连结DF,则BC1∥DF.
因为DF平面A1CD,BC1平面A1CD,
所以BC1∥平面A1CD.
(2)因为ABC-A1B1C1是直三棱柱,所以AA1⊥CD.
由已知AC=CB,D为AB的中点,所以CD⊥AB.
又AA1∩AB=A,于是CD⊥平面ABB1A1.
由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,
故A1D2+DE2=A1E2,即DE⊥A1D.
所以VC-A1DE==1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询