微分方程问题
设y1(x),y2(x)是y"+q(x)y=0的任意两个解,q(x)在(a,b)连续,证明y1,y2的郎斯基行列式恒等于常数,x∈(a,b)...
设y1(x),y2(x)是y"+q(x)y=0的任意两个解,q(x)在(a,b)连续,证明y1,y2的郎斯基行列式恒等于常数,x∈(a,b)
展开
2个回答
展开全部
因为y1(x),y2(x)是y"+q(x)y=0的任意两个解,
所以y1''+q(x)y1=0
y2''+q(x)y2=0
解得y1''=-q(x)y1--------------1
y2''=-q(x)y2--------------2
要证明朗斯宾行列式w(y1,y2)= |y1 y2|=y1y2'-y2y1'=C
|y1' y2'|
只要证明他的导数等于0就行了。。
因为w'(y1,y2)=(y1y2'-y2y1')'=y1y2''-y2y1''=y1(-q(x)y2)-y2(-q(x)y1)=0
所以w(y1,y2)=C
所以y1''+q(x)y1=0
y2''+q(x)y2=0
解得y1''=-q(x)y1--------------1
y2''=-q(x)y2--------------2
要证明朗斯宾行列式w(y1,y2)= |y1 y2|=y1y2'-y2y1'=C
|y1' y2'|
只要证明他的导数等于0就行了。。
因为w'(y1,y2)=(y1y2'-y2y1')'=y1y2''-y2y1''=y1(-q(x)y2)-y2(-q(x)y1)=0
所以w(y1,y2)=C
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询