积分∫x/[(x^2+1)(x^2+4)]dx
展开全部
解:原式=1/2∫dx²/(x²+1)(x²+4)
=1/2∫1/3·[1/(x²+1)-1/(x²+4)]dx²
=1/6∫dx²/(x²+1)-1/6∫dx²/(x²+4)
=1/6·ln(x²+1)-1/6·ln(x²+4)+C
=1/2∫1/3·[1/(x²+1)-1/(x²+4)]dx²
=1/6∫dx²/(x²+1)-1/6∫dx²/(x²+4)
=1/6·ln(x²+1)-1/6·ln(x²+4)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
∫x/[(x^2+1)(x^2+4)]dx
=1/3∫x[1/(x^2+1) - 1/(x^2+4)]dx
=1/3[∫x/(x^2+1)dx-∫x/(x^2+4)dx]
=1/3[1/2∫1/[(x^2+1)]d(x^2+1)-1/2∫1/[(x^2+4)d(x^2+4)]]
=1/3[1/2ln(x^2+1)-1/2ln(x^2+4)+C]
=1/6ln[(x^2+1)/(x^2+4)]+C
∫x/[(x^2+1)(x^2+4)]dx
=1/3∫x[1/(x^2+1) - 1/(x^2+4)]dx
=1/3[∫x/(x^2+1)dx-∫x/(x^2+4)dx]
=1/3[1/2∫1/[(x^2+1)]d(x^2+1)-1/2∫1/[(x^2+4)d(x^2+4)]]
=1/3[1/2ln(x^2+1)-1/2ln(x^2+4)+C]
=1/6ln[(x^2+1)/(x^2+4)]+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询