因数,倍数,质数,合数的含义是什么

赛严宝1
2014-04-29 · TA获得超过4.2万个赞
知道大有可为答主
回答量:1.7万
采纳率:80%
帮助的人:3052万
展开全部
因数:整数除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数.
倍数:
①一个数能够被另一数整除,这个数就是另一数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
②一个数除以另一数所得的商。如a÷b=c,就是说a是b的c倍,c是倍数。
3 一个因数能让他的积整除,那么,这个数就是因数,他的积就是倍数。 例:3╳5=15

例如:A÷B=C,就可以说A是B的C倍

质数(又称为素数)
1.就是在所有比1大的整数中,除了1和它本身以外,不再有别的因数,这种整数叫做质数。还可以说成质数只有1和它本身两个约数。2.质数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3×5,所以15不是素数;
又如,12 =6×2=4×3,所以12也不是质数。另一方面,13除了等于13×1以 外,不能表示为其它任何两个整数的乘积,所以13是一个质数。

质数的概念
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。从这个观点可将整数分为两种,一种叫质数,一种叫合数。(1不是质数,也不是合数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。质数中除2是偶数外,其他都是奇数。

合数:除1和本身外还有其他约数的整数。如:6,它的约数有1、2、3、6
1既不是质数也不是合数。
75
唯余一朵在Z5
2014-04-29 · TA获得超过3850个赞
知道大有可为答主
回答量:4526
采纳率:31%
帮助的人:1096万
展开全部
因数
[yīn shù]

假如整数n除以m,结果是无余数的整数,那么我们称m就是n的因数。 需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称n为m的倍数。

数学名词
定义
在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。
事实上因数一般定义在整数上:设a为整数,b为非零整数,若存在整数q,使得a=qb,则称b是a的因数,记作b|a。但也有的作者不要求b≠0。

倍数
[bèi shù]

①一个整数能够被另一整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。 ②一个数除以另一数所得的商。如a÷b=c,就是说a是b的c倍,a是b的倍数。 一个数能整除它的积,那么,这个数就是因数,它的积就是倍数。 3 × 5 = 15 。因数1 因数2 倍数 例如:A÷B=C,就可以说A是B的C倍。 ③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
定义
对于整数m(0除外),能被n整除(m/n),那么m就是n的倍数。相对来说,称n为m的因数。如15能够被3和5整除,因此15是3的倍数,也是5的倍数。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。

质数

质数又称素数。一个大于1的自然数,如果除了1和它自身外,不能被其他自然数整除的数;(除0以外)否则称为合数 。根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。
关于质数有很多历史悠久的世界级的难题,如哥德巴赫猜想,黎曼猜想,孪生素数猜想等。
质数可分基本质数(2和3),阴性质数(6N-1形)和阳性质数(6N+1形)。阴性不等数(不等于6NM+-(M-N)两式)乘以6减去1是阴性质数;阳性不等数(不等于6NM+-(N+M)两式)乘以6加上1是阳性质数。

概念
只有1和它本身两个正因数的自然数,叫质数(或称素数)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)
100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,在100内共有25个质数。
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设 N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。
如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。
因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以证明。

合数(数论基础概念)
[hé shù]

数学用语,指自然数中除了能被1和本身整除外,还能被其他的数整除(不包括0)的数。与之相对的是质数(因数只有1和它本身,如2,3,5,7,11,13等等,也称素数),而1既不属于质数也不属于合数,-----当然以上概念都是建立在自然数(不包括0)的基础之上的·
1基本概念
合数(Composite number)又名合成数,是在大于1的正整数中,满足以下任一(等价)条件的正整数:
1、是两个大于1 的整数之乘积;
2、拥有至少三个正因数(因子);
3、有至少一个素因子的非素数。
4、两个或两个以上素数的乘积,可以组成一个合数,并且只可以组成一个合数。反之,一个合数可以拆分为一组素数的乘积,并且只可以拆分为一组素数的乘积。
5、除1以外不是质数的正整数就是合数。
6、除了1和它本身之外,还有其他正因数的数
注:"0"“1”既不是质数也不是合数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式