解一道数学证明题(八年级上册)
第一题CP平分∠ACD,BP平分∠ABC,∠BPC=40°,∠CAP=?第二题∠ACB=90°,AC=BCAD⊥a,BE⊥a请确定AD、DE和BE之间的关系...
第一题
CP平分∠ACD,BP平分∠ABC,∠BPC=40°,∠CAP=?
第二题
∠ACB=90°,AC=BC
AD⊥a,BE⊥a
请确定AD、DE和BE之间的关系 展开
CP平分∠ACD,BP平分∠ABC,∠BPC=40°,∠CAP=?
第二题
∠ACB=90°,AC=BC
AD⊥a,BE⊥a
请确定AD、DE和BE之间的关系 展开
1个回答
展开全部
1、证明:设BA的延长线上的一点E。
∵∠ACD=∠BAC+∠ABC
∴1/2∠ACD=1/2∠BAC+1/2∠ABC
∵∠PBC=1/2∠ABC ∠PCD=1/2∠ACD
∴∠PCD=∠1/2∠BAC+∠PBC
∵∠PCD=∠PBC+∠BPC
∴1/2∠BAC=∠PBC
∴∠BAC=2∠PBC=80°
∴∠CAE=180°-∠BAC=100°
作PF⊥AB于F、PM⊥BC于M、PN⊥AC于N。
∵∠ABP=∠CBP ∠DCP=∠ACP
∴PF=PM PM=PN(角平分线上的点到这个角的两边的距离相等)
∴PF=PN
∴∠CAP=1/2∠CAE=50°(到角的两边的距离相等的点在这个角的平分线上)
2、解:AD=BE+DE
∵∠ADC=∠ACB=90°
∴∠DAC+∠DCA=∠DCA+∠ECB=90°
∴∠DAC=∠ECB
∵∠ADC=∠CEB=90° ∠DAC=∠ECB AC=CB
∴⊿ADC≌⊿CEB
∴AD=CE CD=BE
∵CE=CD+DE
∴AD=BE+DE
∵∠ACD=∠BAC+∠ABC
∴1/2∠ACD=1/2∠BAC+1/2∠ABC
∵∠PBC=1/2∠ABC ∠PCD=1/2∠ACD
∴∠PCD=∠1/2∠BAC+∠PBC
∵∠PCD=∠PBC+∠BPC
∴1/2∠BAC=∠PBC
∴∠BAC=2∠PBC=80°
∴∠CAE=180°-∠BAC=100°
作PF⊥AB于F、PM⊥BC于M、PN⊥AC于N。
∵∠ABP=∠CBP ∠DCP=∠ACP
∴PF=PM PM=PN(角平分线上的点到这个角的两边的距离相等)
∴PF=PN
∴∠CAP=1/2∠CAE=50°(到角的两边的距离相等的点在这个角的平分线上)
2、解:AD=BE+DE
∵∠ADC=∠ACB=90°
∴∠DAC+∠DCA=∠DCA+∠ECB=90°
∴∠DAC=∠ECB
∵∠ADC=∠CEB=90° ∠DAC=∠ECB AC=CB
∴⊿ADC≌⊿CEB
∴AD=CE CD=BE
∵CE=CD+DE
∴AD=BE+DE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |