一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有多少个?

列出这些数。... 列出这些数。 展开
 我来答
曼奇尼聊球
2013-11-18 · TA获得超过2.3万个赞
知道小有建树答主
回答量:1万
采纳率:84%
帮助的人:455万
展开全部
设:原两位数的十位数为x,个位数为y.
则原两位数值为(10x+y),交换后两位数的个位数为x,十位数为y,数值为(10y+x),x.y为小于10的正整数
因为交换后的两位数比原来小27
所以(10x+y)-(10y+x)=27
10x+y-10y-x=27
9x-9y=27
x-y=3
则x-3=y,y+3=x
因为x.y为小于10的正整数
所以x=9,8,7,6,5,4;y=6,5,4,3,2,1
所以10x+y=96,85,74,63,52,41 共有6个
(注意,y不为零,因为交换前后都是两位数)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式