求解答,高中数学题
展开全部
(1)。△ABC中,若cos(π/3-A)=2cosA,求A的值。
解:(1/2)cos(π/3-A)=cosA
cos(π/3)cos(π/3-A)=cosA
(1/2)[cosA+cos(2π/3-A)]=cosA
cosA+cos(2π/3-A)=2cosA
cosA=cos(2π/3-A)
故A=2π/3-A,2A=2π/3;∴A=π/3.
(2)。若cosA=1/3,且S△ABC=(√2)c²,求sinC的值。
解:∵cosA=1/3,∴sinA=√(1-1/9)=√(8/9)=(2/3)√2;
S△ABC=(1/2)bcsinA=(1/2)[(2/3)√2]bc=[(1/3)√2]bc=(√2)c²,∴b/c=3;
由余弦定理有cosA=1/3=(b²+c²-a²)/2bc=[(b/c)²+1-(a/c)²]/(2b/c)=[9+1-(a/c)²]/6=[10-(a/c)²]/6
∴10-(a/c)²=2,(a/c)²=8,故a/c=2√2.
由正弦定理有a/c=sinA/sinC=2√2,∴sinC=(sinA)/(2√2)=[(2/3)√2]/(2√2)=1/3.
解:(1/2)cos(π/3-A)=cosA
cos(π/3)cos(π/3-A)=cosA
(1/2)[cosA+cos(2π/3-A)]=cosA
cosA+cos(2π/3-A)=2cosA
cosA=cos(2π/3-A)
故A=2π/3-A,2A=2π/3;∴A=π/3.
(2)。若cosA=1/3,且S△ABC=(√2)c²,求sinC的值。
解:∵cosA=1/3,∴sinA=√(1-1/9)=√(8/9)=(2/3)√2;
S△ABC=(1/2)bcsinA=(1/2)[(2/3)√2]bc=[(1/3)√2]bc=(√2)c²,∴b/c=3;
由余弦定理有cosA=1/3=(b²+c²-a²)/2bc=[(b/c)²+1-(a/c)²]/(2b/c)=[9+1-(a/c)²]/6=[10-(a/c)²]/6
∴10-(a/c)²=2,(a/c)²=8,故a/c=2√2.
由正弦定理有a/c=sinA/sinC=2√2,∴sinC=(sinA)/(2√2)=[(2/3)√2]/(2√2)=1/3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询