已知椭圆x2\4+y2\2=1上两个动点P(x1,y1)Q(x2,y2)且x1+x2=2 (1)求
展开全部
椭圆的方程是x2/4+y2/2=1吧,我就照这样做了(x2即x的平方)
设PQ坐标分别为(x1,y1),(x2,y2)
MF=a+ex=2+((根号2)/2)*1
又因为等差数列得2MF=FP+FQ=(a+ex1)+(a+ex2)=2a+e(x1+x2)
MF代入得x1+x2=2
设PQ中点为S,坐标即为(1,t),2t=y1+y2
由点差法求得(y1-y2)/(x1-x2)=-1/(y1+y2)=-1/(2t)
则PQ为y=(-1/2t)(x-1)+t,则PQ垂直平分线为y=2t(x-1)+t
所以当x-1=-1/2时即x=1/2时恒有y=0
所以定点A为(1/2,0)
则B点为(-1/2,0)
d=【(x1+1/2)平方+(y1)平方】开方
由椭圆方程得:y平方==2-x2/2
d=[x2/2+x+9/4]开方
当x=-1/2时有最小值根号2
即PB的最小值为根号2,点P坐标为【-1/2,(根号30)/4】
设PQ坐标分别为(x1,y1),(x2,y2)
MF=a+ex=2+((根号2)/2)*1
又因为等差数列得2MF=FP+FQ=(a+ex1)+(a+ex2)=2a+e(x1+x2)
MF代入得x1+x2=2
设PQ中点为S,坐标即为(1,t),2t=y1+y2
由点差法求得(y1-y2)/(x1-x2)=-1/(y1+y2)=-1/(2t)
则PQ为y=(-1/2t)(x-1)+t,则PQ垂直平分线为y=2t(x-1)+t
所以当x-1=-1/2时即x=1/2时恒有y=0
所以定点A为(1/2,0)
则B点为(-1/2,0)
d=【(x1+1/2)平方+(y1)平方】开方
由椭圆方程得:y平方==2-x2/2
d=[x2/2+x+9/4]开方
当x=-1/2时有最小值根号2
即PB的最小值为根号2,点P坐标为【-1/2,(根号30)/4】
追问
A点坐标对了,但是PB好像不是这个答案,P(0,正负根号2)PB最小值2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询