确定自由度的依据和计算方法?
展开全部
1、在统计学中,自由度指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。
2、首先,在估计总体的平均数时,由于样本中的 n 个数都是相互独立的,从其中抽出任何一个数都不影响其他数据,所以其自由度为n。
在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。
自由度定义:
统计学上,自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数,称为该统计量的自由度。一般来说,自由度等于独立变量减掉其衍生量数。举例来说,变异数的定义是样本减平均值(一个由样本决定的衍生量),因此对N个随机样本而言,其自由度为N-1。数学上,自由度是一个随机向量的维度数,也就是一个向量能被完整描述所需的最少单位向量数。
以上内容参考:百度百科-自由度
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
判断一家边缘计算公司的好坏,不只是看服务价格,还要考虑服务效果,服务专业度,服务效率等很多因素。建议可以多对比几家公司看看。图为信息科技(深圳)有限公司给您了解下。图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
2013-08-20
展开全部
http://bbs.freekaoyan.com/read.php?tid-418270-page-1.html 这篇帖子有详细介绍统计学中的自由度金志成实验设计书中的定义:能独立变化的数据数目。只要有n-1个数确定,第n个值就确定了,它不能自由变化。所以自由度就是n-1。自由度表示的是一组数据可以自由表化的数量的多少。n-1是通常的计算方法,更准确的讲应该是n-x,n表示“处理”的数量,x表示实际需要计算的参数的数量。如需要计算2个参数,则数据里只有n-2个数据可以自由变化。例如,一组数据,平均数一定,则这组数据有n-1个数据可以自由变化;如一组数据平均数一定,标准差也一定,则有n-2个数据可以自由变化。 f=n-x的得出需要大量的数理统计的证明 自由度的设定是出于这样一个理由:在总体平均数未知时,用样本平均数去计算离差(常用小s)会受到一个限制————要计算标准差(小s)就必须先知道样本平均数,而样本平均数和n都知道的情况下,数据的总和就是一个常数了。所以,“最后一个”样本数据就不可以变了,因为它要是变,总和就变了,而这是不允许的。至于有的自由度是n-2什么的,都是同样道理。 通俗点说,一个班上有50个人,我们知道他们语文成绩平均分为80,现在只需要知道49个人的成绩就能推断出剩下那个人的成绩。你可以随便报出49个人的成绩,但是最后一个人的你不能瞎说,因为平均分已经固定下来了,自由度少一个了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-20
展开全部
自由度的依据 用样本推算总体总会过低估计总体 所以用统计方法在分母N上减去一 得到修正后的无偏估计总体 一个样本里已知总体的和 已知N-1个数值 就可以求出最后一个(被固定的) 其余n-1可以自由变化 故自由度介意看行为科学统计
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-20
展开全部
http://bbs.freekaoyan.com/read.php?tid=395447这篇是以前关于自由度计算的讨论帖
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、在统计学中,自由度指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。
2、
首先,在估计总体的平均数时,由于样本中的 n 个数都是相互独立的,从其中抽出任何一个数都不影响其他数据,所以其自由度为n。
在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。
例如,有一个有4个数据(n=4)的样本,其平均值m等于5,即受到m=5的条件限制,在自由确定4、2、5三个数据后, 第四个数据只能是9,否则m≠5。因而这里的自由度υ=n-1=4-1=3。推而广之,任何统计量的自由度υ=n-k(k为限制条件的个数)。
其次,统计模型的自由度等于可自由取值的自变量的个数。如在回归方程中,如果共有p个参数需要估计,则其中包括了p-1个自变量(与截距对应的自变量是常量1)。因此该回归方程的自由度为p-1。
2、
首先,在估计总体的平均数时,由于样本中的 n 个数都是相互独立的,从其中抽出任何一个数都不影响其他数据,所以其自由度为n。
在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。
例如,有一个有4个数据(n=4)的样本,其平均值m等于5,即受到m=5的条件限制,在自由确定4、2、5三个数据后, 第四个数据只能是9,否则m≠5。因而这里的自由度υ=n-1=4-1=3。推而广之,任何统计量的自由度υ=n-k(k为限制条件的个数)。
其次,统计模型的自由度等于可自由取值的自变量的个数。如在回归方程中,如果共有p个参数需要估计,则其中包括了p-1个自变量(与截距对应的自变量是常量1)。因此该回归方程的自由度为p-1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询