1个回答
展开全部
为了方便换一下字母, 设u, v ∈ [a,b], u < v, w = (u+v)/2, 求证: 2f(w) < f(u)+f(v).
证明: 由f(x)在[a,b]二阶可导, 考虑f(x)在w处的(带Lagrange余项的)二阶Taylor展开,
在其中分别取x = u, v得: 存在s ∈ (u,w)与t ∈ (w,v), 使
f(u) = f(w)+f'(w)(u-w)+f"(s)(u-w)²/2, f(v) = f(w)+f'(w)(v-w)+f"(t)(v-w)²/2.
相加得f(u)+f(v) = 2f(w)+f'(w)(u+v-2w)+f"(s)(u-w)²/2++f"(t)(v-w)²/2
= 2f(w)+f"(s)(u-w)²/2++f"(t)(v-w)²/2 (∵ w = (u+v)/2)
> 2f(w) (∵f"(s), f"(t) > 0, (u-w)², (v-w)² > 0),
即所求证.
证明: 由f(x)在[a,b]二阶可导, 考虑f(x)在w处的(带Lagrange余项的)二阶Taylor展开,
在其中分别取x = u, v得: 存在s ∈ (u,w)与t ∈ (w,v), 使
f(u) = f(w)+f'(w)(u-w)+f"(s)(u-w)²/2, f(v) = f(w)+f'(w)(v-w)+f"(t)(v-w)²/2.
相加得f(u)+f(v) = 2f(w)+f'(w)(u+v-2w)+f"(s)(u-w)²/2++f"(t)(v-w)²/2
= 2f(w)+f"(s)(u-w)²/2++f"(t)(v-w)²/2 (∵ w = (u+v)/2)
> 2f(w) (∵f"(s), f"(t) > 0, (u-w)², (v-w)² > 0),
即所求证.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询