比较模拟退火算法和遗传算法相同点和不同点
展开全部
模拟退火的话进化是由参数问题t控制的,然后通过一定的操作产生新的解,根据当前解的优劣和温度参数t确定是否接受当前的新解。
遗传算法主要由选择,交叉,变异等操作组成,通过种群进行进化。
主要不同点是模拟退火是采用单个个体进行进化,遗传算法是采用种群进行进化。模拟退火一般新解优于当前解才接受新解,并且还需要通过温度参数t进行选择,并通过变异操作产生新个体。而遗传算法新解是通过选择操作进行选择个体,并通过交叉和变异产生新个体。
相同点是都采用进化控制优化的过程。
遗传算法主要由选择,交叉,变异等操作组成,通过种群进行进化。
主要不同点是模拟退火是采用单个个体进行进化,遗传算法是采用种群进行进化。模拟退火一般新解优于当前解才接受新解,并且还需要通过温度参数t进行选择,并通过变异操作产生新个体。而遗传算法新解是通过选择操作进行选择个体,并通过交叉和变异产生新个体。
相同点是都采用进化控制优化的过程。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |