一道高等数学关于函数连续性的题,求解。如图,第19题。
展开全部
19. 1)要使极限
lim(x→0)f(x) = lim(x→0)[g(x)-cosx]/x
存在,需
lim(x→0)[g(x)-cosx] = g(0)-1 = 0,
故利用 L'Hospital 法则,有
lim(x→0)f(x) = lim(x→0)[g(x)-cosx]/x (0/0)
= lim(x→0)[g'(x)+sinx]
= g'(0),
要使 f(x) 在 x=0 连续,须得 g'(0) = a;
2)在 x≠0,
f'(x) = {[g'(x)+sinx]x - [g(x)-cosx]}/x^2,
又
f'(0) = lim(x→0){[g(x)-cosx]/x - g'(0)}/x
= lim(x→0)[g(x)-cosx - xg'(0)]/x^2 (0/0)
= lim(x→0)[g'(x)+sinx - g'(0)]/(2x) (0/0)
= lim(x→0)[g"(x)+cosx]/2
= [g"(0)+1]/2,
即
f'(x) = {[g'(x)+sinx]x - [g(x)-cosx]}/x^2,x≠0,
= [g"(0)+1]/2,x=0;
又
lim(x→0)f‘(x)
= lim(x→0){[g'(x)+sinx]x - [g(x)-cosx]}/x^2 (0/0)
= lim(x→0){[g“(x)+cosx]x}/(2x)
= lim(x→0)[g“(x)+cosx]/2
= g"(0)+1]/2
= f'(0),
得知 f’(x) 在 x=0 连续。
lim(x→0)f(x) = lim(x→0)[g(x)-cosx]/x
存在,需
lim(x→0)[g(x)-cosx] = g(0)-1 = 0,
故利用 L'Hospital 法则,有
lim(x→0)f(x) = lim(x→0)[g(x)-cosx]/x (0/0)
= lim(x→0)[g'(x)+sinx]
= g'(0),
要使 f(x) 在 x=0 连续,须得 g'(0) = a;
2)在 x≠0,
f'(x) = {[g'(x)+sinx]x - [g(x)-cosx]}/x^2,
又
f'(0) = lim(x→0){[g(x)-cosx]/x - g'(0)}/x
= lim(x→0)[g(x)-cosx - xg'(0)]/x^2 (0/0)
= lim(x→0)[g'(x)+sinx - g'(0)]/(2x) (0/0)
= lim(x→0)[g"(x)+cosx]/2
= [g"(0)+1]/2,
即
f'(x) = {[g'(x)+sinx]x - [g(x)-cosx]}/x^2,x≠0,
= [g"(0)+1]/2,x=0;
又
lim(x→0)f‘(x)
= lim(x→0){[g'(x)+sinx]x - [g(x)-cosx]}/x^2 (0/0)
= lim(x→0){[g“(x)+cosx]x}/(2x)
= lim(x→0)[g“(x)+cosx]/2
= g"(0)+1]/2
= f'(0),
得知 f’(x) 在 x=0 连续。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没有任何关于g(0)的信息吗?
追问
是的,这是完整的照片了…
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询