第2题,有关数列,请详细回答,谢谢!
展开全部
an=9^n*[(n+1)]/10^n
=(9/10)^n*[(n+1)]
∴有 a(n+1)/an={(9/10)^(n+1)*[(n+2)]}/{(9/10)^n*[(n+1)]}
=(9/10)*[(n+2)/(n+1)]
=(9/10)*[1+1/(n+1)]
令a(n+1)/an≥1,
得1≤n≤8,
令a(n+1)/an≤1,得n≥8,
n<=7时,an=9时,an>a(n+1) 数列递减
所以最大值为a8和a9
a8=a9=9^9/10^8。
=(9/10)^n*[(n+1)]
∴有 a(n+1)/an={(9/10)^(n+1)*[(n+2)]}/{(9/10)^n*[(n+1)]}
=(9/10)*[(n+2)/(n+1)]
=(9/10)*[1+1/(n+1)]
令a(n+1)/an≥1,
得1≤n≤8,
令a(n+1)/an≤1,得n≥8,
n<=7时,an=9时,an>a(n+1) 数列递减
所以最大值为a8和a9
a8=a9=9^9/10^8。
追问
为什么na(n+1) 数列递减
追答
不好意思,写错啦。
n≤7时,数列递增
n≥9时,数列递减
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询