2个回答
展开全部
1/(1+x) = 1/[2+(x-1)] = (1/2)/[1+(x-1)/2]
= (1/2)∑<n=0,∞>(-1)^n[(x-1)/2]^n = ∑<n=0,∞>[(-1)^n/2^(n+1)](x-1)^n.
-1<(x-1)/2<1, -2<x-1<2, -1<x<3, x=3时为交错级数收敛,故收敛域 x∈(-1,3].
ln(1+x)-ln2 = ∫<1,x> dt/(1+t) = ∑<n=0,∞>[(-1)^n/2^(n+1)](x-1)^(n+1)/(n+1),
ln(1+x) = ln2+∑<n=0,∞>[(-1)^n/2^(n+1)](x-1)^(n+1)/(n+1), x∈(-1,3].
= (1/2)∑<n=0,∞>(-1)^n[(x-1)/2]^n = ∑<n=0,∞>[(-1)^n/2^(n+1)](x-1)^n.
-1<(x-1)/2<1, -2<x-1<2, -1<x<3, x=3时为交错级数收敛,故收敛域 x∈(-1,3].
ln(1+x)-ln2 = ∫<1,x> dt/(1+t) = ∑<n=0,∞>[(-1)^n/2^(n+1)](x-1)^(n+1)/(n+1),
ln(1+x) = ln2+∑<n=0,∞>[(-1)^n/2^(n+1)](x-1)^(n+1)/(n+1), x∈(-1,3].
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询