微分方程中有关ln|x|中绝对值的疑问
求解微分方程:y'+y/x=sinx/x用常数变易法得y=e^(∫-1/xdx)·[c+∫(sinx/x)·(e^∫1/xdx)dx]按理说出现∫1/xdx,应该是得到∫...
求解微分方程:
y'+y/x=sinx/x
用常数变易法得
y=e^( ∫-1/x dx)·[c+∫(sinx/x)·(e^ ∫1/x dx)dx]
按理说出现 ∫1/x dx,应该是得到 ∫1/x dx=ln|x|,所以e^( ∫-1/x dx)=1/|x|
但是参考答案中并没加绝对值符号,直接得到e^( ∫-1/x dx)=1/x
而且许多题目中都是这样,为什么呢?
(有人说不会影响结果,但下面两个结果能一样吗?
e^( ∫-1/x dx)=e^-ln|x|=-1/|x| 恒负,
e^( ∫-1/x dx)=e^-lnx=-1/x 可正可负) 展开
y'+y/x=sinx/x
用常数变易法得
y=e^( ∫-1/x dx)·[c+∫(sinx/x)·(e^ ∫1/x dx)dx]
按理说出现 ∫1/x dx,应该是得到 ∫1/x dx=ln|x|,所以e^( ∫-1/x dx)=1/|x|
但是参考答案中并没加绝对值符号,直接得到e^( ∫-1/x dx)=1/x
而且许多题目中都是这样,为什么呢?
(有人说不会影响结果,但下面两个结果能一样吗?
e^( ∫-1/x dx)=e^-ln|x|=-1/|x| 恒负,
e^( ∫-1/x dx)=e^-lnx=-1/x 可正可负) 展开
3个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
因为 指数e^( ∫-1/x dx) 恒 >0, 所以 1/x 必大于0,即此方程e^( ∫-1/x dx)=1/x已经定义 x 的定义域了,就不需要加 绝对值 多此一举了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-21
展开全部
这个地方不好说。一般来说取对数时,自变量的取值范围是大于0的,但是在复数范围内负数可以取对数。所以,答案也不一定对,关键要看x的取值范围,可以说这个题目是有漏洞的,只要自己明白就行了,不用纠结答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询