蛋白酶为什么不会水解自己?
展开全部
你会吃你自己吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
胃蛋白酶也是蛋白酶的一种,就以胃蛋白酶为例子解释好了
胃蛋白酶是一种酸性蛋白酶.由胃部中的胃粘膜主细胞释放出没有活性的胃蛋白酶原,酶原在遇到由胃壁细胞所释放的胃酸中的盐酸后切去44个氨基酸残基将被激活,其最适ph值约为1.5—2.2。在中性或碱性ph值的溶液中,胃蛋白酶会发生解链而丧失活性。
胃蛋白酶在对蛋白质或多肽进行水解时,具有一定的氨基酸序列特异性,倾向于水解氨基端或羧基端为芳香族氨基酸(苯丙氨酸、色氨酸和酪氨酸)或亮氨酸的肽键。胃蛋白酶在水解食物蛋白的同时为什么不会将自身水解呢?是不是因为组成胃蛋白酶的氨基酸中没有苯丙氨酸、色氨酸、酪氨酸和亮氨酸呢?答案是否定的,不但有,而且这些氨基酸的数目还不少呢。
那又为什么有相应的酶切位点而胃蛋自酶却不能发挥作用呢?前面所说的氨基酸组成只涉及蛋白质的一级结构,而有活性的蛋白质还有空间结构,包括二级结构、三级结构,部分蛋白还有四级结构。空间结构是表现其物理性质和化学特性以及生物学功能的基础。蛋白质通过多肽链的盘绕折叠形成其特定的空间结构时,有些氨基酸残基在
蛋白质的表面,而有些氨基酸残基隐藏在蛋白质的内部.其规律往往是疏水性氨基酸残基在蛋白质内部,亲水性氨基酸残基在蛋白质表面。而苯丙氨酸、色氨酸、酪氨酸和亮氨酸就属于疏水性氨基酸.这些氨基酸残基形成特定的空间结构时都隐藏在胃蛋白酶内部了,所以胃蛋白酶不能将自身水解。而食物中的蛋白质在胃中的强酸性环境下,蛋白质发生变性,其特定的空间结构发生破坏,蛋白质分子结构伸展松散.暴露出原来隐藏在分子内部的疏水性氨基酸,容易被胃蛋白酶分解。值得注意的是. 胃蛋白酶不将自身催化水解是有条件的,即必须形成特定的空间结构。当天然蛋白质受到某些物理因素(如高温、高压、紫外线等)和化学因素(酸、碱、有机溶剂等)的影响,使其分子内部原有的高级构象发生变化.这种现象称为蛋白质变性。变性后的蛋白质分子结构伸展松散,有些原来隐藏在分子内部的基团暴露,易被蛋白酶识别并水解。但如果胃蛋白酶发生了变性也能被自身和其他的消化蛋白酶催化水解.如胃蛋白酶在胃内酸性环境下具有特定的空间构象不会被其自身水解,进入小肠碱性环境中会变性而被胰蛋白酶等消化。
胃蛋白酶是一种酸性蛋白酶.由胃部中的胃粘膜主细胞释放出没有活性的胃蛋白酶原,酶原在遇到由胃壁细胞所释放的胃酸中的盐酸后切去44个氨基酸残基将被激活,其最适ph值约为1.5—2.2。在中性或碱性ph值的溶液中,胃蛋白酶会发生解链而丧失活性。
胃蛋白酶在对蛋白质或多肽进行水解时,具有一定的氨基酸序列特异性,倾向于水解氨基端或羧基端为芳香族氨基酸(苯丙氨酸、色氨酸和酪氨酸)或亮氨酸的肽键。胃蛋白酶在水解食物蛋白的同时为什么不会将自身水解呢?是不是因为组成胃蛋白酶的氨基酸中没有苯丙氨酸、色氨酸、酪氨酸和亮氨酸呢?答案是否定的,不但有,而且这些氨基酸的数目还不少呢。
那又为什么有相应的酶切位点而胃蛋自酶却不能发挥作用呢?前面所说的氨基酸组成只涉及蛋白质的一级结构,而有活性的蛋白质还有空间结构,包括二级结构、三级结构,部分蛋白还有四级结构。空间结构是表现其物理性质和化学特性以及生物学功能的基础。蛋白质通过多肽链的盘绕折叠形成其特定的空间结构时,有些氨基酸残基在
蛋白质的表面,而有些氨基酸残基隐藏在蛋白质的内部.其规律往往是疏水性氨基酸残基在蛋白质内部,亲水性氨基酸残基在蛋白质表面。而苯丙氨酸、色氨酸、酪氨酸和亮氨酸就属于疏水性氨基酸.这些氨基酸残基形成特定的空间结构时都隐藏在胃蛋白酶内部了,所以胃蛋白酶不能将自身水解。而食物中的蛋白质在胃中的强酸性环境下,蛋白质发生变性,其特定的空间结构发生破坏,蛋白质分子结构伸展松散.暴露出原来隐藏在分子内部的疏水性氨基酸,容易被胃蛋白酶分解。值得注意的是. 胃蛋白酶不将自身催化水解是有条件的,即必须形成特定的空间结构。当天然蛋白质受到某些物理因素(如高温、高压、紫外线等)和化学因素(酸、碱、有机溶剂等)的影响,使其分子内部原有的高级构象发生变化.这种现象称为蛋白质变性。变性后的蛋白质分子结构伸展松散,有些原来隐藏在分子内部的基团暴露,易被蛋白酶识别并水解。但如果胃蛋白酶发生了变性也能被自身和其他的消化蛋白酶催化水解.如胃蛋白酶在胃内酸性环境下具有特定的空间构象不会被其自身水解,进入小肠碱性环境中会变性而被胰蛋白酶等消化。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询