高等数学 同济五版 上册 习题3-2 第四题 我算得极限为e^-1 所以不连续
1个回答
展开全部
lnf(x)=(1/x)[(1/x)ln(1+x)-1]=[ln(1+x)-x]/x^2
lim(x→0+)[ln(1+x)-x]/氏凯x^2=lim(x→0+){[1/(1+x)]-1}/(2x)=lim(x→穗乱0+)[-x/(2x)]lim(x→0+)[1/(1+x)]=-1/2
∴lim(x→0+)f(x)=e^(-1/2)
又lim(x→0-)f(x)=f(0)=e^(-1/2)
∴f(x)在x=0处猜核档连续。
lim(x→0+)[ln(1+x)-x]/氏凯x^2=lim(x→0+){[1/(1+x)]-1}/(2x)=lim(x→穗乱0+)[-x/(2x)]lim(x→0+)[1/(1+x)]=-1/2
∴lim(x→0+)f(x)=e^(-1/2)
又lim(x→0-)f(x)=f(0)=e^(-1/2)
∴f(x)在x=0处猜核档连续。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询