1个回答
展开全部
因为:cosA=2[cos(A/2)]^2-1
所以,[cos(A/2)]^2=(1+cosA)/2
所以,1+cosA=2sinBsinC
又因为:A+B+C=180°
所以,A=180°-(B+C)
所以,cosA=-cos(B+C)
那么,1-cos(B+C)=2sinBsinC
===> 1-[cosBcosC-sinBsinC]=2sinBsinC
===> 1=cosBcosC+sinBsinC
===> 1=cos(B-C)
===> B-C=0
===> B=C
所以,△ABC为等腰三角形。
所以,[cos(A/2)]^2=(1+cosA)/2
所以,1+cosA=2sinBsinC
又因为:A+B+C=180°
所以,A=180°-(B+C)
所以,cosA=-cos(B+C)
那么,1-cos(B+C)=2sinBsinC
===> 1-[cosBcosC-sinBsinC]=2sinBsinC
===> 1=cosBcosC+sinBsinC
===> 1=cos(B-C)
===> B-C=0
===> B=C
所以,△ABC为等腰三角形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询