已知定义域为(0,+∞)上的单调递增函数f(x),满足:?x∈(0,+∞),有f(f(x)-lnx)=1,则方程f(

已知定义域为(0,+∞)上的单调递增函数f(x),满足:?x∈(0,+∞),有f(f(x)-lnx)=1,则方程f(x)=-x2+4x-2解的个数为()A.0B.1C.2... 已知定义域为(0,+∞)上的单调递增函数f(x),满足:?x∈(0,+∞),有f(f(x)-lnx)=1,则方程f(x)=-x2+4x-2解的个数为(  )A.0B.1C.2D.3 展开
 我来答
小柒tunt
2014-09-09 · TA获得超过134个赞
知道答主
回答量:160
采纳率:90%
帮助的人:54.4万
展开全部
解答:解:由于定义域为(0,+∞)上的单调递增函数f(x)满足f(f(x)-lnx)=1,f(x)=-x2+4x-2,
故必存在唯一的正实数a,使f(x)-lnx=a,f(a)=1 ①,
∴f(a)-lna=a ②.
由①②求得a=1,故f(x)=1+lnx,方程f(x)=-x2+4x-2,即 1+lnx=-x2+4x-2,即-x2+4x-3=lnx.
故方程解的个数即函数y=-x2+4x-3的图象和函数 y=lnx 的图象的交点个数.
数形结合可得函数y=-x2+4x-3的图象和函数 y=lnx 的图象的交点个数为3,
故选:D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式