请帮帮我
1个回答
2014-11-13
展开全部
解:方法一:(1)证明:因为底面ABCD为菱形,所以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.设AC∩BD=F,连结EF.因为AC=2,PA=2,PE=2EC,故PC=2,EC=,FC=,从而=,=.因为=,∠FCE=∠PCA,所以△FCE∽△PCA,∠FEC=∠PAC=90°,由此知PC⊥EF.PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED.(2)在平面PAB内过点A作AG⊥PB,G为垂足.因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC=PB,故AG⊥平面PBC,AG⊥BC.BC与平面PAB内两条相交直线PA,AG都垂直,故BC⊥平面PAB,于是BC⊥AB,所以底面ABCD为正方形,AD=2,PD==2.设D到平面PBC的距离为d.因为AD∥BC,且AD⊄平面PBC,BC⊂平面PBC,故AD∥平面PBC,A、D两点到平面PBC的距离相等,即d=AG=.设PD与平面PBC所成的角为α,则sinα==.所以PD与平面PBC所成的角为30°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询