高数 f(x)在区间(a,b)内可导,且x0∈(a,b),则下述结论正确的是_____
b.f(x)在x0未必可微d.lim(x→x0)[f(x)^2-f(x0)^2]/(x-x0)=2f(x0)f'(x0)b是错的,d是对的,希望解释下...
b.f(x)在x0未必可微
d.lim(x→x0) [f(x)^2-f(x0)^2]/(x-x0)=2f(x0)f'(x0)
b是错的,d是对的,希望解释下 展开
d.lim(x→x0) [f(x)^2-f(x0)^2]/(x-x0)=2f(x0)f'(x0)
b是错的,d是对的,希望解释下 展开
1个回答
展开全部
设y=f(x)是一个单变量函数,如果y在x=x[0]处存在导数y'=f'(x),则称y在x=x[0]处可导。
如果一个函数在x[0]处可导,那么它一定在x[0]处是连续函数
如果一个函数在x[0]处连续,那么它在x[0]处不一定可导
函数可导定义:
(1)若f(x)在x0处连续,则当a趋向于0时,[f(x+a)-f(x)]/a存在极限,则称f(x)在x0处可导.
(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导.
函数可导的条件
如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来
一元函数中可导与可微等价,它们与可积无关。
多元函数可微必可导,而反之不成立。
即:
在一元函数里,可导是可微的充分必要条件;
在多元函数里,可导是可微的必要条件,可微是可导的充分条件。
如果一个函数在x[0]处可导,那么它一定在x[0]处是连续函数
如果一个函数在x[0]处连续,那么它在x[0]处不一定可导
函数可导定义:
(1)若f(x)在x0处连续,则当a趋向于0时,[f(x+a)-f(x)]/a存在极限,则称f(x)在x0处可导.
(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导.
函数可导的条件
如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来
一元函数中可导与可微等价,它们与可积无关。
多元函数可微必可导,而反之不成立。
即:
在一元函数里,可导是可微的充分必要条件;
在多元函数里,可导是可微的必要条件,可微是可导的充分条件。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询