已知函数f(x)=ex-kx,(1)若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x∈R,f(|x|
已知函数f(x)=ex-kx,(1)若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;(3)设函数...
已知函数f(x)=ex-kx,(1)若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;(3)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>( en+1+2)n2(n∈N*).
展开
1个回答
展开全部
(Ⅰ)由k=e得f(x)=ex-ex,所以f'(x)=ex-e.
由f'(x)>0得x>1,故f(x)的单调递增区间是(1,+∞),
由f'(x)<0得x<1,故f(x)的单调递减区间是(-∞,1).
(Ⅱ)由f(|-x|)=f(|x|)可知f(|x|)是偶函数.
于是f(|x|)>0对任意x∈R成立等价于f(x)>0对任意x≥0成立.
由f'(x)=ex-k=0得x=lnk.
①当k∈(0,1]时,f'(x)=ex-k>1-k≥0(x>0).
此时f(x)在[0,+∞)上单调递增.
故f(x)≥f(0)=1>0,符合题意.
②当k∈(1,+∞)时,lnk>0.
当x变化时f'(x),f(x)的变化情况如下表:
由此可得,在[0,+∞)上,f(x)≥f(lnk)=k-klnk.
依题意,k-klnk>0,又k>1,∴1<k<e.
综合①,②得,实数k的取值范围是0<k<e.
(Ⅲ)∵F(x)=f(x)+f(-x)=ex+e-x,∴F(x1)F(x2)=ex1+x2+e?(x1+x2)+ex1?x2+e?x1+x2>ex1+x2+e?(x1+x2)+2>ex1+x2+2,
∴F(1)F(n)>en+1+2,F(2)F(n-1)>en+1+2,F(n)F(1)>en+1+2.
由此得,[F(1)F(2)F(n)]2=[F(1)F(n)][F(2)F(n-1)][F(n)F(1)]>(en+1+2)n
故F(1)F(2)F(n)>(en+1+2)
,n∈N*.
由f'(x)>0得x>1,故f(x)的单调递增区间是(1,+∞),
由f'(x)<0得x<1,故f(x)的单调递减区间是(-∞,1).
(Ⅱ)由f(|-x|)=f(|x|)可知f(|x|)是偶函数.
于是f(|x|)>0对任意x∈R成立等价于f(x)>0对任意x≥0成立.
由f'(x)=ex-k=0得x=lnk.
①当k∈(0,1]时,f'(x)=ex-k>1-k≥0(x>0).
此时f(x)在[0,+∞)上单调递增.
故f(x)≥f(0)=1>0,符合题意.
②当k∈(1,+∞)时,lnk>0.
当x变化时f'(x),f(x)的变化情况如下表:
x | (0,lnk) | lnk | (lnk,+∞) |
f′(x) | - | 0 | + |
f(x) | 单调递减 | 极小值 | 单调递增 |
依题意,k-klnk>0,又k>1,∴1<k<e.
综合①,②得,实数k的取值范围是0<k<e.
(Ⅲ)∵F(x)=f(x)+f(-x)=ex+e-x,∴F(x1)F(x2)=ex1+x2+e?(x1+x2)+ex1?x2+e?x1+x2>ex1+x2+e?(x1+x2)+2>ex1+x2+2,
∴F(1)F(n)>en+1+2,F(2)F(n-1)>en+1+2,F(n)F(1)>en+1+2.
由此得,[F(1)F(2)F(n)]2=[F(1)F(n)][F(2)F(n-1)][F(n)F(1)]>(en+1+2)n
故F(1)F(2)F(n)>(en+1+2)
n |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询