
指数函数解答题
4个回答
2014-10-25
展开全部
(1)
函数f(x)=「1/(2^x-1)+1/2」x^3有意义,只需2^x-1≠0,从而x≠0
故函数f(x)定义域为x≠0;
(2)
证明:
当x>0时,x^3>0, 「1/(2^x-1)+1/2」>0,所以f(x)=「1/(2^x-1)+1/2」x^3>0
当x<0时,x^3<0,1/(2^x-1)>-1/2,所以「1/(2^x-1)+1/2」<0,从而f(x)=「1/(2^x-1)+1/2」x^3>0
综上所述,f(x)>0 得证.
函数f(x)=「1/(2^x-1)+1/2」x^3有意义,只需2^x-1≠0,从而x≠0
故函数f(x)定义域为x≠0;
(2)
证明:
当x>0时,x^3>0, 「1/(2^x-1)+1/2」>0,所以f(x)=「1/(2^x-1)+1/2」x^3>0
当x<0时,x^3<0,1/(2^x-1)>-1/2,所以「1/(2^x-1)+1/2」<0,从而f(x)=「1/(2^x-1)+1/2」x^3>0
综上所述,f(x)>0 得证.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-10-25
展开全部
亲,采纳后回答可以吗?合作愉快
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-10-25
展开全部
x不等于0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询