
∫(0→π)√(1+cos2x)dx 求定积分
2个回答

2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出...
点击进入详情页
本回答由网易云信提供
2015-01-04 · 知道合伙人教育行家
关注

展开全部
解:∫<0,π>√(1+cos2x)dx=∫<0,π>√(2cos²x)dx (应用余弦倍角公式)
=√2∫<0,π>│cosx│dx
=√2(∫<0,π/2>│cosx│dx+∫<π/2,π>│cosx│dx)
=√2(∫<0,π/2>cosxdx-∫<π/2,π>cosxdx)
=√2[(sinx)│<0,π/2>-(sinx)│<π/2,π>]
=√2[(1-0)-(0-1)]
=2√2。
=√2∫<0,π>│cosx│dx
=√2(∫<0,π/2>│cosx│dx+∫<π/2,π>│cosx│dx)
=√2(∫<0,π/2>cosxdx-∫<π/2,π>cosxdx)
=√2[(sinx)│<0,π/2>-(sinx)│<π/2,π>]
=√2[(1-0)-(0-1)]
=2√2。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询