六年级数学小论文1000字,不能网上的,自己写
10个回答
2014-11-26
展开全部
1证明一个三角形是直角三角形
2用于直角三角形中的相关计算
3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方
用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
只知道这些
2用于直角三角形中的相关计算
3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方
用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
只知道这些
2014-11-26
展开全部
哲学家波普尔认为,“科学和知识的增长永远始于问题,终于问题---越来越深化的问题,越来越启发新问题的问题。”胡适也强调:“问题是知识学问的老祖宗,古—往今来一切知识的产生与凝聚,都是因为要解答问题。”科学理论的发现始于问题。
曾经看过一个故事,一个大学教授在教学概率时创设了一个经典的情境。教授来到教室里,向学生抛出一个问题:我们班上有55名同学,我敢保证其中有两个同学是同年同月同日出生的。学生们纷纷表示不相信,因为从一般的概率问题想,这种可能性是非常小的。教授见此情况就说,谁愿意和我打赌,以一美元为赌注。结果有8名学生愿意和教授打赌,通过印证,班上确实有同学同年同月同日出生,然后教授做出了精彩的讲解。我想,这堂课每个学生都积极参与其中了,都会终身不忘的。
由此可见,每节课的导入非常重要,就像杂耍的人必须要用精彩的“开场白”来吸引观众,来招徕生意一样,课堂的“开场白”做好了,学生听课会兴致勃勃,主动参与其中,学生的参与度高了,课堂的质量也就提高了。
创设问题情境要根据学生实际,从多方面设计问题情境。
1、问题情境要有趣味性
在讲《圆的认识》那节课我是这样引入课题的:我出示一个游戏,游戏有两种方案,方案一:全班同学围着一个正方形的四条边站着,你可以任意选择站的位置。站好后大家都向正方形的对角线焦点出投乒乓球,投中者胜。第二种方案:全班同学围着一个圆站着,也可以任意选择位置,每个同学在在自己的位置上向圆心投乒乓球,投中者胜,这两种游戏方案你觉得那种游戏更公平?为什么?我的话音刚落,学生们就七嘴八舌的讨论起来了。一分钟后,学生们都达成了共识,都认为站在圆上投乒乓球的游戏规则最公平,理由是:在圆上向圆心投乒乓球大家的距离都相等,所以很公平。而站在正方形的四条边上向对角线的交点投乒乓球就不公平,特别是站在顶点上的同学最吃亏,因为正方形的顶点到对角线的距离最远。接着我又说,圆的优点还有很多,这节课我们就来探讨它的优点和人们在生活中充分的利用它的优点。通过这个问题情境的创设,让全班学生都产生了兴趣,都主动参与其中,这节课学生的参与度很高,对圆有了很深刻的认识。
2、问题情境要有可探究性
我在教学圆的面积时,是这样创设问题情境的。我提出一个问题:树为什么长成圆的而不长成方的?学生对这个问题非常感兴趣,然后我就讲树为什么长成园的,从力学的角度看,是为了减少在外力作用下对树的伤害,倘若长成方的,遭到撞击,棱角就会严重受损。里一个原因是与我们这堂课学习内容密切相关,就是它要最大面积的吸收土地中的养分,如何计算圆的面积呢?就是本节课我们探究的内容。
3、问题情境要与学生实际生活和实际经验密切相关。
用比例解决实际问题的教学内容,教材上的问题情境是这样的:“张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨谁,李奶奶家上个月的水费是多少?”。我觉得这个问题情境不适合农村小学生,因为村民的饮用水都是从井里打出来的,没使用过自来水,从来就没交过水费,学生不知道水费为何物,理解题意有一定的难度。根据学生实际情况,我出示了这样的问题情境:小芳在商店花了2.4元钱,买了6袋小吃,小明买了5包同样的小吃,该付多少钱?
就提高学生课堂参与度而言,方法是多种多样的,在实际教学中不能单一使用,我们还要博采众之所长,从而达到提高学生课堂参与度、提高课堂的有效性的目的。
曾经看过一个故事,一个大学教授在教学概率时创设了一个经典的情境。教授来到教室里,向学生抛出一个问题:我们班上有55名同学,我敢保证其中有两个同学是同年同月同日出生的。学生们纷纷表示不相信,因为从一般的概率问题想,这种可能性是非常小的。教授见此情况就说,谁愿意和我打赌,以一美元为赌注。结果有8名学生愿意和教授打赌,通过印证,班上确实有同学同年同月同日出生,然后教授做出了精彩的讲解。我想,这堂课每个学生都积极参与其中了,都会终身不忘的。
由此可见,每节课的导入非常重要,就像杂耍的人必须要用精彩的“开场白”来吸引观众,来招徕生意一样,课堂的“开场白”做好了,学生听课会兴致勃勃,主动参与其中,学生的参与度高了,课堂的质量也就提高了。
创设问题情境要根据学生实际,从多方面设计问题情境。
1、问题情境要有趣味性
在讲《圆的认识》那节课我是这样引入课题的:我出示一个游戏,游戏有两种方案,方案一:全班同学围着一个正方形的四条边站着,你可以任意选择站的位置。站好后大家都向正方形的对角线焦点出投乒乓球,投中者胜。第二种方案:全班同学围着一个圆站着,也可以任意选择位置,每个同学在在自己的位置上向圆心投乒乓球,投中者胜,这两种游戏方案你觉得那种游戏更公平?为什么?我的话音刚落,学生们就七嘴八舌的讨论起来了。一分钟后,学生们都达成了共识,都认为站在圆上投乒乓球的游戏规则最公平,理由是:在圆上向圆心投乒乓球大家的距离都相等,所以很公平。而站在正方形的四条边上向对角线的交点投乒乓球就不公平,特别是站在顶点上的同学最吃亏,因为正方形的顶点到对角线的距离最远。接着我又说,圆的优点还有很多,这节课我们就来探讨它的优点和人们在生活中充分的利用它的优点。通过这个问题情境的创设,让全班学生都产生了兴趣,都主动参与其中,这节课学生的参与度很高,对圆有了很深刻的认识。
2、问题情境要有可探究性
我在教学圆的面积时,是这样创设问题情境的。我提出一个问题:树为什么长成圆的而不长成方的?学生对这个问题非常感兴趣,然后我就讲树为什么长成园的,从力学的角度看,是为了减少在外力作用下对树的伤害,倘若长成方的,遭到撞击,棱角就会严重受损。里一个原因是与我们这堂课学习内容密切相关,就是它要最大面积的吸收土地中的养分,如何计算圆的面积呢?就是本节课我们探究的内容。
3、问题情境要与学生实际生活和实际经验密切相关。
用比例解决实际问题的教学内容,教材上的问题情境是这样的:“张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨谁,李奶奶家上个月的水费是多少?”。我觉得这个问题情境不适合农村小学生,因为村民的饮用水都是从井里打出来的,没使用过自来水,从来就没交过水费,学生不知道水费为何物,理解题意有一定的难度。根据学生实际情况,我出示了这样的问题情境:小芳在商店花了2.4元钱,买了6袋小吃,小明买了5包同样的小吃,该付多少钱?
就提高学生课堂参与度而言,方法是多种多样的,在实际教学中不能单一使用,我们还要博采众之所长,从而达到提高学生课堂参与度、提高课堂的有效性的目的。
更多追问追答
追答
累死了!!
累死了!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-11-26
展开全部
你觉得会有人回答你?(——)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-11-26
展开全部
我都说了自己写了,那你还问我们
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-11-26
展开全部
1000字,你还是自己写然后再抄一点吧
追问
。。
追答
1000字真多,就算别人写的,也是先百度后抄在纸上给你抄,这样你还是在抄百度。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询