数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1)(1)求{an}的通项公式;(2)等差数列{bn}的各项为
数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1)(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a...
数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1)(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn.
展开
1个回答
展开全部
(1)因为an+1=2Sn+1,…①
所以an=2Sn-1+1(n≥2),…②
所以①②两式相减得an+1-an=2an,即an+1=3an(n≥2)
又因为a2=2S1+1=3,
所以a2=3a1,
故{an}是首项为1,公比为3的等比数列
∴an=3n-1.
(2)设{bn}的公差为d,由T3=15得,可得b1+b2+b3=15,可得b2=5,
故可设b1=5-d,b3=5+d,
又因为a1=1,a2=3,a3=9,并且a1+b1,a2+b2,a3+b3成等比数列,
所以可得(5-d+1)(5+d+9)=(5+3)2,
解得d1=2,d2=-10
∵等差数列{bn}的各项为正,
∴d>0,
∴d=2,
∴Tn=3n+
×2=n2+2n
所以an=2Sn-1+1(n≥2),…②
所以①②两式相减得an+1-an=2an,即an+1=3an(n≥2)
又因为a2=2S1+1=3,
所以a2=3a1,
故{an}是首项为1,公比为3的等比数列
∴an=3n-1.
(2)设{bn}的公差为d,由T3=15得,可得b1+b2+b3=15,可得b2=5,
故可设b1=5-d,b3=5+d,
又因为a1=1,a2=3,a3=9,并且a1+b1,a2+b2,a3+b3成等比数列,
所以可得(5-d+1)(5+d+9)=(5+3)2,
解得d1=2,d2=-10
∵等差数列{bn}的各项为正,
∴d>0,
∴d=2,
∴Tn=3n+
n(n?1) |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询