求由方程2y-x=(x-y)ln(x-y)所确定的函数y=y(x)的微分dy
展开全部
2y-x=(x-y)ln(x-y)
2dy?dx=(dx?dy)ln(x?y)+(x?y)×
(dx?dy)
2dy-dx=(dx-dy)ln(x-y)+dx-dy
[3+ln(x-y)]dy=[2+ln(x-y)]dx
(x-y)[3+ln(x-y)]dy=(x-y)[2+ln(x-y)]dx
[3(x-y)+(x-y)ln(x-y)]dy=[2(x-y)+(x-y)ln(x-y)]dx
因为2y-x=(x-y)ln(x-y),
所以,[3(x-y)+(2y-x)]dy=[2(x-y)+(2y-x)]dx
(2x-y)dy=xdx
①若2x-y=0,则dy=2dx
②若2x?y≠0,则dy=
dx;
2dy?dx=(dx?dy)ln(x?y)+(x?y)×
1 |
x?y |
2dy-dx=(dx-dy)ln(x-y)+dx-dy
[3+ln(x-y)]dy=[2+ln(x-y)]dx
(x-y)[3+ln(x-y)]dy=(x-y)[2+ln(x-y)]dx
[3(x-y)+(x-y)ln(x-y)]dy=[2(x-y)+(x-y)ln(x-y)]dx
因为2y-x=(x-y)ln(x-y),
所以,[3(x-y)+(2y-x)]dy=[2(x-y)+(2y-x)]dx
(2x-y)dy=xdx
①若2x-y=0,则dy=2dx
②若2x?y≠0,则dy=
x |
2x?y |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询