(2005?荆州)已知二次函数y=x2-kx+k-5.(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点
(2005?荆州)已知二次函数y=x2-kx+k-5.(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式...
(2005?荆州)已知二次函数y=x2-kx+k-5.(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式;(3)若(2)中的二次函数的图象与x轴交于A、B,与y轴交于点C;D是第四象限函数图象上的点,且OD⊥BC于H,求点D的坐标.
展开
1个回答
展开全部
解答:(1)证明:对于二次方程:x2-kx+k-5=0,
有△=(-k)2-4k+20=k2-4k+4+16=(k-2)2+16>0;
可得其必有两个不相等的根;
故无论k取何实数,此二次函数的图象与x轴都有两个交点.
(2)解:若此二次函数图象的对称轴为x=1,
则对称轴的方程为-
(-k)=1,k=2;
易得它的解析式为y=x2-2x-3.
(3)解:若函数解析式为y=x2-2x-3;
易得其与x轴的交点坐标为A(-1,0)B(3,0);
与y轴的交点C的坐标为(0,-3);
BC的解析式为:y=x-3;
设D的坐标为(x,x2-2x-3),由OD⊥BC,图象过(0,0),则OD的解析式为:y=-x,
易得x2-2x-3=-x;
故x=
,
解可得D的坐标为(
,-
)
有△=(-k)2-4k+20=k2-4k+4+16=(k-2)2+16>0;
可得其必有两个不相等的根;
故无论k取何实数,此二次函数的图象与x轴都有两个交点.
(2)解:若此二次函数图象的对称轴为x=1,
则对称轴的方程为-
1 |
2 |
易得它的解析式为y=x2-2x-3.
(3)解:若函数解析式为y=x2-2x-3;
易得其与x轴的交点坐标为A(-1,0)B(3,0);
与y轴的交点C的坐标为(0,-3);
BC的解析式为:y=x-3;
设D的坐标为(x,x2-2x-3),由OD⊥BC,图象过(0,0),则OD的解析式为:y=-x,
易得x2-2x-3=-x;
故x=
| ||
2 |
解可得D的坐标为(
| ||
2 |
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询