(2013?顺义区一模)如图,已知抛物线y=ax2+bx+3与y轴交于点A,且经过B(1,0),C(5,8)两点,点D是抛
(2013?顺义区一模)如图,已知抛物线y=ax2+bx+3与y轴交于点A,且经过B(1,0),C(5,8)两点,点D是抛物线顶点,E是对称轴与直线AC的交点,F与E关于...
(2013?顺义区一模)如图,已知抛物线y=ax2+bx+3与y轴交于点A,且经过B(1,0),C(5,8)两点,点D是抛物线顶点,E是对称轴与直线AC的交点,F与E关于点D对称.(1)求抛物线的解析式;(2)求证:∠AFE=∠CFE;(3)在抛物线的对称轴上是否存在点P,使△AFP与△FDC相似?若有,请求出所有符合条件的点P的坐标;若没有,请说明理由.
展开
1个回答
展开全部
(1)将点B(1,0),C(5,8)代入y=ax2+bx+3得
,
解得
,
所以抛物线的解析式为y=x2-4x+3;
(2)由(1)可得抛物线顶点D(2,-1),
直线AC的解析式为y=x+3,
由E是对称轴与直线AC的交点,则E(2,5),
由F与E关于点D对称,则F(2,-7),
证法一:从点A、C分别向对称轴作垂线AM、CN,交对称轴于M、N,
在Rt△FAM和Rt△FCN中
∠AMF=∠CNF=90°,
=
=
=
=
所以Rt△FAM∽Rt△FCN,
所以∠AFE=∠CFE;
证法二:直线AF的解析式为y=-5x+3,
点C(5,8)关于对称轴的对称点是Q(-1,8),
将点Q(-1,8)代入y=-5x+3,可知点Q在直线AF上,
所以∠AFE=∠CFE;
(3)在△FDC中,三内角不等,且∠CDF为钝角
①若点P在点F下方时,
在△AFP中,∠AFP为钝角
因为∠AFE=∠CFE,∠AFE+∠AFP=180°,∠CFE+∠CDF<180°,
所以∠AFP和∠CDF不相等
所以,点P在点F下方时,两三角形不能相似
②若点P在点F上方时,
由∠AFE=∠CFE,要使△AFP与△FDC相似
只需
=
(点P在DF之间)或
=
(点P在FD的延长线上)
解得点P的坐标为(2,-3)或(2,19).
|
解得
|
所以抛物线的解析式为y=x2-4x+3;
(2)由(1)可得抛物线顶点D(2,-1),
直线AC的解析式为y=x+3,
由E是对称轴与直线AC的交点,则E(2,5),
由F与E关于点D对称,则F(2,-7),
证法一:从点A、C分别向对称轴作垂线AM、CN,交对称轴于M、N,
在Rt△FAM和Rt△FCN中
∠AMF=∠CNF=90°,
AM |
MF |
2 |
10 |
1 |
5 |
3 |
15 |
CN |
NF |
所以Rt△FAM∽Rt△FCN,
所以∠AFE=∠CFE;
证法二:直线AF的解析式为y=-5x+3,
点C(5,8)关于对称轴的对称点是Q(-1,8),
将点Q(-1,8)代入y=-5x+3,可知点Q在直线AF上,
所以∠AFE=∠CFE;
(3)在△FDC中,三内角不等,且∠CDF为钝角
①若点P在点F下方时,
在△AFP中,∠AFP为钝角
因为∠AFE=∠CFE,∠AFE+∠AFP=180°,∠CFE+∠CDF<180°,
所以∠AFP和∠CDF不相等
所以,点P在点F下方时,两三角形不能相似
②若点P在点F上方时,
由∠AFE=∠CFE,要使△AFP与△FDC相似
只需
AF |
CF |
PF |
DF |
AF |
DF |
PF |
CF |
解得点P的坐标为(2,-3)或(2,19).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询