数学题,求详解
已知u≥1,v≥1且(logau)2+(logav)2=loga(au2)+loga(av2)(a>1),则loga(uv)...
已知u≥1,v≥1且(logau)2+(logav)2=loga(au2)+loga(av2)(a>1),则loga(uv)
展开
1个回答
展开全部
解:由题意,
等式右边=loga au² +loga av²=loga a +loga u²+loga a +loga v²
=1+2loga u+1+2loga v
移项得,(loga u-1)²+(loga v-1)²=2²
且原式=loga(uv)=loga u + loga v
令logau=x,logav=y,易知x≥0 ,y≥0.
则(x-1)²+(y-1)²=2²[-π/2 ≤ x ≤ π/2]
且原式=x+y
设x-1=2sina, y-1=2cosa
则x=1+2sina≥o,y=1+2cosa≥0
即:sina≥-1/2,cosa≥-1/2.
则a∈[-π/6,π/2]
则原式=2sina+1+2cosa+1
=2sina+2cosa+2
=2√2sin(a+π/4)+2
且a+π/4∈[π/12,3/4π]
所以,原式=x+y 的最大值为2√2+2; 最小值为2√2×sin(π/12)+2
等式右边=loga au² +loga av²=loga a +loga u²+loga a +loga v²
=1+2loga u+1+2loga v
移项得,(loga u-1)²+(loga v-1)²=2²
且原式=loga(uv)=loga u + loga v
令logau=x,logav=y,易知x≥0 ,y≥0.
则(x-1)²+(y-1)²=2²[-π/2 ≤ x ≤ π/2]
且原式=x+y
设x-1=2sina, y-1=2cosa
则x=1+2sina≥o,y=1+2cosa≥0
即:sina≥-1/2,cosa≥-1/2.
则a∈[-π/6,π/2]
则原式=2sina+1+2cosa+1
=2sina+2cosa+2
=2√2sin(a+π/4)+2
且a+π/4∈[π/12,3/4π]
所以,原式=x+y 的最大值为2√2+2; 最小值为2√2×sin(π/12)+2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询